Erich Kretschmann

Erich Kretschmann

Erich Kretschmann (1887-1973) was a German mathematician and Gymnasium (school) teacher.

He obtained his "D.Phil." at Berlin University in 1914 with his dissertation entitled "Eine Theorie der Schwerkraft im Rahmen der ursprünglichen Einsteinschen Relativitätstheorie".His advisors were Max Planck and Heinrich Rubens.

In his 1915 papers, he introduced the Kretschmann scalar. In his 1915 papers he also introduced, though not in name, the point coincidence argument in relativity. Similar ideas appeared in Einstein's writings on general relativity. Historians Don Howard and John Norton suggest that Einstein may have failed to adequately acknowledge Kretschmann's contribution. Kretschmann's use of the argument was more topological while Einstein's use involved physical measurements.

Kretschmann is most famous for his 1917 claim that Einstein's use of the principle of covariance in General Relativity is vacuous. Kretschmann claimed that the demand that a theory be put in generally covariant form does not limit or restrict the range of acceptable theories, but is simply a challenge to the mathematician's ingenuity. According to Kretschmann, any theory can be put in generally covariant form. Einstein responded that even if general covariance is not a purely formal limitation on acceptable theories, it plays "an important heuristic role" in the formulation of General Relativity.

Einstein wrote concerning Kretschmann's objection:"Although it is true that every empirical law can be put in a generally covariant form, yet the principle of relativity possesses a great heuristic power....Of two theoretical systems, both of which agree with experience, the one is to be preferred which, from the point of view of the absolute differential calculus is the simpler and more transparent. Let one express Newtonian mechanics four-dimensionally in the form of generally covariant equations and one will surely be convinced that the principle of relativity excludes this theory from the practical, though not the theoretical, viewpoint." (1918, p. 242)

Einstein suggested that Newtonian theory would be impossibly complex if put in covariant form, although since Einstein made that claim it has been formulated in covariant form by several physicists, including Elie Cartan in 1923 and Friedrichs in 1927. Misner, Thorne, and Wheeler, in their textbook "Gravitation" (1973) Ch. 12 present the covariant version of Newton.

In a letter of 1925 Arnold Sommerfeld wrote favorably of Kretschmann's work in relativity and the statistics of atoms, but said that he needed to get a different teaching position (get away from Königsberg) in order to be able to do more research.

The issue of whether covariance is a real restriction and if so in what sense appears in various contributions to the philosophical debate concerning Einstein's "hole argument." This argument initially had led Einstein in 1913 for a time to reject generally covariant theories, because a region of space/time without forces would undermine determinism or unique extension of trajectories. He later concluded that space/time points without gravity would not be individuated.

It has been claimed also that Kretschmann discovered that the conformal geometry of General Relativity corresponds to the light cone structure, a point rediscovered by and extensively exploited by Hermann Weyl, and since then developed by Jürgen Ehlers and collaborators.

Kretschmann's prose is so convoluted and obscure that reception and appreciation of his work was generally delayed. James Anderson, in the mid-1960s made Kretschmann's work more well-known, though he used it as an object of criticism with respect to Kretschmann's claims concerning the symmetry groups of special and general relativity.

Kretschmann published half a dozen less noted papers during the 1920s and early 1930s, the last in 1934, though he continued to live in Germany for decades. Whether the Nazi seizure of power had anything to do with his ceasing to publish should be investigated.

ee also

*Hole argument

External links

* [http://www.lrz-muenchen.de/~Sommerfeld/PersDat/02425.html Kretschmann in A. Sommerfeld's correspondence]
* [http://genealogy.math.ndsu.nodak.edu/html/id.phtml?id=52000 E.K.'s thesis cited at Mathematics Genealogy Project]

* [http://philsci-archive.pitt.edu/archive/00002123/ "Einstein’s First Systematic Exposition of General Relativity", by M. Janssen, on philsci-archive.pitt.edu]

[http://www.pitt.edu/~jdnorton/papers/decades.pdf Norton, John D., "General Covariance and the Foundations of General Relativity: Eight Decades of Dispute," Rep. Progr. Theor. Phys., vol. 56, 1993, 751-856.]

[http://www.pitt.edu/~jdnorton/papers/labyrinth-HGR3.pdf Don Howard and John D. Norton, "Out of the Labyrinth? Einstein, Hertz, and the Gõttingen Response to the Hole Argument," in John Earman, Janssen, and John Norton, eds., "The Attraction of Gravitation: New Studies in the History of General Relativity" Boston: Birkhãuser,1993, 30-62.]

Major works by Erich Kretschmann

* Kretschmann, Erich. 1915. "Über die prinzipielle Bestimmbarkeit der berechtigten Bezugssysteme beliebiger Relativitätstheorien (I), (II)". Annalen der Physik 48: 907–942, 943–982.

* ———. 1917. "Über den physikalischen Sinn der Relativitätspostulate. A. Einsteins neue und seine ursprüngliche Relativitätstheorie". Annalen der Physik 53: 575–614.

Einstein's Response to Kretschmann:

Einstein, Albert, 1918 "Principielles zur allgemainen Relativitãtstheorie," Annalen der Physik, vol. 55.

Commentary:

Robert Rynasiewicz, "Kretshmann's Analysis of Covariance and Relativity Principles," in "The Expanding Worlds of General Relativity" ed. Hubert Goeener, et al, Boston: Birkhãuser, 1999, 431-462.

Other and Later Works of Kretschmann:

Beitrag zur Kritik der Blochschen Theorie der Elektrizitätsleitung. Z. f. Physik 87, 518-534(1934)

Über die Resonanzbedingung und über die Beschleunigung der Elektronen in derBlochschen Theorie der Elektrizitätsleistung. Z. f. Physik 88, 792-799. (1934)

Beitrag zur Theorie des elektrischen Widerstandes und der Supraleitfähigkeitder Metalle. Annalen d. Physik (5) 13, 564-598. 1932

Atom und Welle. Schriften Königsberg 6, 216-231. 1929

Eine Bemerkung zu Herrn A. Sommerfelds Arbeit: ``Zur Elektronentheorie derMetalle auf Grund der Fermischen Statistik". Z. f. Physik 48, 739-744.(1928)

Die Supraleitfähigkeit nach Schrödingers Wellengleichung und FermisStatistik. Annalen d. Physik (4) 86, 914-928.(1928)

Theorie der Dauerströme in Supraleitern. Annalen d. Physik (4) 80, 109-136. Berichtigung. Annalen d. Physik (4) 80,532. (1926)

Über die Ableitung der Helmholtzschen Wirbelsätze in der Lorentz-Einsteinschen Relativitätstheorie. Schriften Königsberg 1, 179-191.(1925)

Zur Theorie der Supraleitfähigkeit und der gewöhnlichen elektrischenLeitfähigkeit der Metalle. Schriften Königsberg 1, 193-204. (1925)

Das Maxwell-Boltzmannsche Geschwindigkeits- und Energieverteilungsgesetz inder Relativitätstheorie. Phys. Zs. 25, 162-165. 192

Das statische Einkörperproblem in der Einstein'schen Theorie. Antwort anHrn. A. Gullstrand. Ark. för Mat., Astron, och Fys. 17, Nr. 25, 4 S. 1923

Eine Bemerkung zu Hrn. A. Gullstrands Abhandlung: ``Allgemeine Lösung desstatischen Einkörperproblems in der Einsteinschen Gravitationstheorie".Ark. för Mat., Astron. och Fys. 17, Nr. 2, 4 S. (1922)

Der Liouvillesche Satz und die Relativitätstheorie. Physik. Zs. 21, 484-487.192

Eine Theorie der Schwerkraft im Rahmen der ursprünglichen {itEinstein}schen Relativitätstheorie. Berlin, 113 1914


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Erich Kretschmann — Erich Justus Kretschmann (* 14. Juli 1887 in Berlin; † 1973) war ein deutscher Physiker, der wichtige Beiträge zur Relativitätstheorie verfasste. Er promovierte 1914 an der Universität Berlin bei Max Planck und Heinrich Rubens. Danach arbeitete… …   Deutsch Wikipedia

  • Kretschmann — ist der Familienname folgender Personen: Erich Kretschmann (1887–1973), deutscher Physiker Friedrich Robert Kretschmann (1858–1934), deutscher Arzt und Geheimer Sanitätsrat Georg Kretschmann (1939−2008), deutscher Historiker Hans von Kretschmann… …   Deutsch Wikipedia

  • Kretschmann scalar — In the theory of Lorentzian manifolds, particularly in the context of applications to general relativity, the Kretschmann scalar is a quadratic scalar invariant. It was introduced by Erich Kretschmann. DefinitionThe Kretschmann invariant is: K =… …   Wikipedia

  • Erich Glowatzky — (* 1909 in Fraureuth; † 27. Februar 1999 in Baden Baden; beerdigt in Fraureuth) war ein deutschstämmiger australischer Unternehmer und Mäzen. Inhaltsverzeichnis 1 Leben 2 Erich Glowatzky Preis 2.1 Preisträger …   Deutsch Wikipedia

  • Karl Friedrich Kretschmann — Titelkupfer zu „Scarron am Fenster“, von Daniel Chodowiecki Karl Friedrich Kretschmann, auch: der Barde Rhingulph; (* 4. Dezember 1738 in Zittau; † 15. Januar (oder 16.) 1809 ebenda) war ein deutscher Lyriker, Lustspielautor und Erzähler …   Deutsch Wikipedia

  • Kritik an der Relativitätstheorie — von Albert Einstein wurde vor allem in den Jahren nach ihrer Veröffentlichung auf wissenschaftlicher, pseudowissenschaftlicher, philosophischer sowie ideologischer Ebene geäußert. Gründe für die Kritik waren beispielsweise eigene… …   Deutsch Wikipedia

  • Criticism of relativity theory — Criticism of Albert Einstein s theory of relativity was mainly expressed in the early years after its publication on a scientific, pseudoscientific, philosophical, or ideological basis. Reasons for criticism were, for example, alternative… …   Wikipedia

  • Список известных учёных-релятивистов —   Это служебный список статей, созданный для координации работ по развитию темы.   Данное предупреждение не ус …   Википедия

  • Contributors to general relativity — General relativity Introduction Mathematical formulation Resources Fundamental concepts …   Wikipedia

  • Curvature invariant (general relativity) — Curvature invariants in general relativity are a set of scalars called curvature invariants that arise in general relativity. They are formed from the Riemann, Weyl and Ricci tensors which represent curvature and possibly operations on them such… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”