Business Process Execution Language

Business Process Execution Language

As defined in the abstract of the Web Services Business Process Execution Language OASIS Standard WS-BPEL 2.0, WS-BPEL (or BPEL for short) is a language for specifying business process behavior based on Web Services. Processes in WS-BPEL export and import functionality by using Web Service interfaces exclusively.

Business processes can be described in two ways. Executable business processes model actual behavior of a participant in a business interaction. Abstract business processes are partially specified processes that are not intended to be executed. An Abstract Process may hide some of the required concrete operational details. Abstract Processes serve a descriptive role, with more than one possible use case, including observable behavior and process template. WS-BPEL is meant to be used to model the behavior of both Executable and Abstract Processes.

WS-BPEL provides a language for the specification of Executable and Abstract business processes. By doing so, it extends the Web Services interaction model and enables it to support business transactions. WS-BPEL defines an interoperable integration model that should facilitate the expansion of automated process integration in both the intra-corporate and the business-to-business spaces.

The origins of BPEL can be traced to WSFL and XLANG. It is serialized in XML and aims to enable "programming in the large". The concepts of "programming in the large" and "programming in the small" distinguish between two aspects of writing the type of long-running asynchronous processes that one typically sees in business processes.


"Programming in the large" generally refers to the high-level state transition interactions of a process—BPEL refers to this concept as an Abstract Process. A BPEL Abstract Process represents a set of publicly observable behaviors in a standardized fashion. An Abstract Process includes information such as when to wait for messages, when to send messages, when to compensate for failed transactions, etc. "Programming in the small", in contrast, deals with short-lived programmatic behavior, often executed as a single transaction and involving access to local logic and resources such as files, databases, etc. BPEL's development came out of the notion that programming in the large and programming in the small required different types of languages.

BPEL Design Goals

There were ten original design goals associated with BPEL:
#Define business processes that interact with external entities through Web Service operations defined using WSDL 1.1, and that manifest themselves as Web services defined using WSDL 1.1. The interactions are “abstract” in the sense that the dependence is on portType definitions, not on port definitions.
#Define business processes using an XML-based language. Do not define a graphical representation of processes or provide any particular design methodology for processes.
#Define a set of Web service orchestration concepts that are meant to be used by both the external (abstract) and internal (executable) views of a business process. Such a business process defines the behavior of a single autonomous entity, typically operating in interaction with other similar peer entities. It is recognized that each usage pattern (i.e. abstract view and executable view) will require a few specialized extensions, but these extensions are to be kept to a minimum and tested against requirements such as import/export and conformance checking that link the two usage patterns.
# Provide both hierarchical and graph-like control regimes, and allow their use to be blended as seamlessly as possible. This should reduce the fragmentation of the process modeling space.
#Provide data manipulation functions for the simple manipulation of data needed to define process data and control flow.
#Support an identification mechanism for process instances that allows the definition of instance identifiers at the application message level. Instance identifiers should be defined by partners and may change.
#Support the implicit creation and termination of process instances as the basic lifecycle mechanism. Advanced lifecycle operations such as "suspend" and "resume" may be added in future releases for enhanced lifecycle management.
#Define a long-running transaction model that is based on proven techniques like compensation actions and scoping to support failure recovery for parts of long-running business processes.
#Use Web Services as the model for process decomposition and assembly.
#Build on Web services standards (approved and proposed) as much as possible in a composable and modular manner.

The BPEL language

BPEL is an Orchestration language, not a choreography language (see Web Service Choreography).The primary difference between orchestration and choreography is executability and control. An orchestration specifies an executable process that involves message exchanges with other systems, such that the message exchange sequences are controlled by the orchestration designer. A choreography specifies a protocol for peer-to-peer interactions, defining, e.g., the legal sequences of messages exchanged with the purpose of guaranteeing interoperability. Such a protocol is not directly executable, as it allows many different realizations (processes that comply with it). A choreography can be realized by writing an orchestration (e.g. in the form of a BPEL process) for each peer involved in it. The orchestration and the choreography distinctions are based on analogies: orchestration refers to the central control (by the conductor) of the behavior of a distributed system (the orchestra consisting of many players), while choreography refers to a distributed system (the dancing team) without centralized control.

BPEL's focus on modern business processes, plus the histories of WSFL and XLANG, led BPEL to adopt web services as its external communication mechanism. Thus BPEL's messaging facilities depend on the use of the Web Services Description Language (WSDL) 1.1 to describe outgoing and incoming messages.

In addition to providing facilities to enable sending and receiving messages, the BPEL programming language also supports:
* A property-based message correlation mechanism
* XML and WSDL typed variables
* An extensible language plug-in model to allow writing expressions and queries in multiple languages: BPEL supports XPath 1.0 by default
* Structured-programming constructs including if-then-elseif-else, while, sequence (to enable executing commands in order) and flow (to enable executing commands in parallel)
* A scoping system to allow the encapsulation of logic with local variables, fault-handlers, compensation-handlers and event-handlers
* Serialized scopes to control concurrent access to variables

What's new in WS-BPEL 2.0?

* New activity types: repeatUntil, validate, forEach (parallel and sequential), rethrow, extensionActivity, compensateScope
* Renamed activities: switch/case renamed to if/else, terminate renamed to exit
* Termination Handler added to scope activities to provide explicit behavior for termination
* Variable initialization
* XSLT for variable transformations (New XPath extension function bpws:doXslTransform)
* XPath access to variable data (XPath variable syntax $variable [.part] /location)
* XML schema variables in Web service activities (for WS-I doc/lit style service interactions)
* Locally declared messageExchange (internal correlation of receive and reply activities)
* Clarification of Abstract Processes (syntax and semantics)
* Enable expression language overrides at each activity

Adding 'programming in the small' support to BPEL

BPEL's control structures such as 'if-then-elseif-else' and 'while' as well as its variable manipulation facilities depend on the use of 'programming in the small' languages to provide logic. All BPEL implementations must support XPath 1.0 as a default language. But the design of BPEL envisages extensibility so that systems builders can use other languages as well. [ BPELJ] is an effort related to [ JSR 207] that may enable Java to function as a 'programming in the small' language within BPEL.


IBM and Microsoft had each defined their own, fairly similar, 'programming in the large' languages, WSFL and XLANG, respectively. With the popularity and advent of BPML, and the growing success of and the open BPMS movement led by JBoss and Intalio Inc., IBM and Microsoft decided to combine these languages into a new language, BPEL4WS. In April 2003, BEA Systems, IBM, Microsoft, SAP and Siebel Systems submitted BPEL4WS 1.1 to OASIS for standardization via the [ Web Services BPEL Technical Committee] . Although BPEL4WS appeared as both a 1.0 and 1.1 version, the OASIS WS-BPEL technical committee [ voted] on 14 September 2004 to name their spec WS-BPEL 2.0. This change in name was done to align BPEL with other Web Service standard naming conventions which start with WS- and accounts for the significant enhancements between BPEL4WS 1.1 and WS-BPEL 2.0. If you are not discussing a specific version, the moniker BPEL is commonly usedFact|date=June 2008.

In June 2007, Active Endpoints, Adobe, BEA, IBM, Oracle and SAP published the BPEL4People and WS-HumanTask specifications, which describe how human interaction in BPEL processes can be implemented.

Relationship of BPEL to BPMN

There is no standard graphical notation for WS-BPEL, as the OASIS technical committee decided this was out of scope. Some vendors have invented their own notations. These notations take advantage of the fact that most constructs in BPEL are block-structured (e.g. sequence, while, pick, scope, etc.) This feature enables a direct visual representation of BPEL process descriptions in the form of "structograms", in a style reminiscent of a Nassi-Shneiderman diagram.

Others have proposed to use a substantially different business process modeling language, namely Business Process Modeling Notation (BPMN), as a graphical front-end to capture BPEL process descriptions. As an illustration of the feasibility of this approach, the BPMN specification includes an informal and partial [ mapping] from BPMN to BPEL 1.1. A more detailed mapping of BPMN to BPEL has been implemented in a number of tools, including an open-source tool known as [ BPMN2BPEL] . However, the development of these tools has exposed fundamental differences between BPMN and BPEL, which make it very difficult, and in some cases impossible, to generate human-readable BPEL code from BPMN models. Even more difficult is the problem of BPMN-to-BPEL "round-trip" engineering: generating BPEL code from BPMN diagrams and maintaining the original BPMN model and the generated BPEL code synchronized, in the sense that any modification to one is propagated to the other.

See also

*Business Process Management
*Business Process Modeling Notation
*Web Services Conversation Language
*WS-CDL []
*XML Process Definition Language
*Yet Another Workflow Language
*Service-Oriented Modeling Framework (SOMF)

External links


* [ WS-BPEL 2.0]
* [ OASIS WSBPEL TC Webpage]
* [ OASIS WSBPEL TC Issues List]
* [ Latest editor's copies of OASIS WSBPEL TC Specs]
* [ The BPEL4WS 1.1 specification]

BPEL and business process sites

* [ The Innovative BPMN-BPEL Roundtrip Engineering Solution]
* [ The Eclipse STP BPMN Diagram Editor]
* [ Orchestra] Fully Open source, extensible and flexible BPEL Solution
* [ ActiveBPEL, Open source BPEL server and BPEL samples]
* [ Business Process Management Initiative Web Site]
* [ Business Modeling Forum]
* [ BPEL Resource Guide]
* [ Service Interaction Patterns (with BPMN diagrams that match BPEL code samples)]
* [ The Open Source BPMS (Eclipse and Apache-based)]
* [ Apache ODE, Open source BPEL server]
* [ NetBeans Enterprise Pack]
* [ BPEL for Windows Workflow Foundation]

BPEL articles

* [ BPEL BluePrints: Web Services Orchestration Using BPEL - presented by the Java BluePrints Solutions Catalog]
* [ "SOA Best Practices: The BPEL Cookbook" - BPEL howto's from Oracle]
* [ "Pattern-based Evaluation of Oracle BPEL"]
* [ "What is BPEL and Why is it so important to my business?" - BPEL Primer from SoftCare]
* [ Description of the upcoming changes from BPEL 1.1 to BPEL 2.0]
* [ Oracle Article: Weaving Web Services Together]
* [ BPEL and Java]
* [ Process-centric realization of SOA: BPEL moves into the limelight]
* [ Validating BPEL Specifications using OCL]
* [ IBM Article: Business Process Choreography in WebSphere: Combining the Power of BPEL and J2EE]
* [ BPEL Primer]
* [ WS-BPEL Extension for Sub-processes, BPEL-SPE]
* [ Analysis of Web Services Composition Languages: The Case of BPEL4WS]
* [ BPEL Begone - How useful is this Standard?]
* [ Pattern-based Evaluation of IBM WebSphere BPEL]
* [ A Close Look at BPEL 2.0 @ SYS-CON Media]
* [ BPEL in SCA assembly model]
* [ Exhaustive Comparison of BPEL 1.1 and BPEL 2.0 - A Graphical Tool for Modeling BPEL 2.0 Processes]
* [ Goal-oriented Business Processes with WS-BPEL]
* [ BPEL for REST]

Books on BPEL 2.0

* SOA for the Business Developer: Concepts, BPEL, and SCA, ISBN 978-158347-065-7

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Business Process Execution Language — Die WS Business Process Execution Language (BPEL) ist eine XML basierte Sprache zur Beschreibung von Geschäftsprozessen, deren einzelne Aktivitäten durch Webservices implementiert sind. Die im Jahr 2002 von IBM, BEA Systems und Microsoft… …   Deutsch Wikipedia

  • Business Process Execution Language — En informatique, Business Process Execution Language (ou BPEL, prononcé bipeul , ou bipèl ), est un langage de programmation destiné à l exécution des procédures d entreprise. Le BPEL est issu des langages WSFL (Web Services Flow Language) et… …   Wikipédia en Français

  • Business Process Execution Language For Web Services — Die WS Business Process Execution Language (BPEL) ist eine XML basierte Sprache zur Beschreibung von Geschäftsprozessen, deren einzelne Aktivitäten durch Webservices implementiert sind. Die im Jahr 2002 von IBM, BEA Systems und Microsoft… …   Deutsch Wikipedia

  • WS-Business Process Execution Language — Die WS Business Process Execution Language (BPEL) ist eine XML basierte Sprache zur Beschreibung von Geschäftsprozessen, deren einzelne Aktivitäten durch Webservices implementiert sind. Die im Jahr 2002 von IBM, BEA Systems und Microsoft… …   Deutsch Wikipedia

  • Business Process Modeling Language — (BPML) is a meta language for the modeling of business processes, just as XML is a meta language for the modeling of business data. BPML was a proposed language, but now the BPMI has dropped support for this in favor of BPEL4WS. BPMI took this… …   Wikipedia

  • Business Process Modeling Language — Die Business Process Modeling Language (BPML) ist eine XML basierte plattformunabhängige Metasprache zur Beschreibung von Geschäftsprozessmodellen. Mit BPML können in WSDL beschriebene Web Services zu Geschäftsprozessen verknüpft werden. Eine… …   Deutsch Wikipedia

  • Business Process Modeling Notation — (BPMN) est une notation graphique standardisée[1] pour modéliser des procédures d entreprise dans un workflow. Business Process Modeling Notation a été développée par la Business Process Management Initiative (BPMI), et est maintenant maintenue… …   Wikipédia en Français

  • Business Process Modeling Notation — Die Business Process Modeling Notation (BPMN, engl. Modellierungsnotation für Geschäftsprozesse) ist eine grafische Spezifikationssprache in der Wirtschaftsinformatik. Sie stellt Symbole zur Verfügung, mit denen Fach und Informatikspezialisten… …   Deutsch Wikipedia

  • Business Process Model and Notation — Die Business Process Model and Notation (BPMN, engl. Modellierungsnotation für Geschäftsprozesse) ist eine grafische Spezifikationssprache in der Wirtschaftsinformatik. Sie stellt Symbole zur Verfügung, mit denen Fach und Informatikspezialisten… …   Deutsch Wikipedia

  • Business Process Modeling — Bei der Geschäftsprozessmodellierung (engl: Business Process Modeling) werden Geschäftsprozesse oder Ausschnitte daraus abstrahiert meist grafisch dargestellt, und somit modelliert. Der Schwerpunkt liegt auf dem Darstellen des Ablaufs, aber auch… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”