Wolstenholme prime

Wolstenholme prime

In number theory, a Wolstenholme prime is a certain kind of prime number. A prime "p" is called a Wolstenholme prime iff the following condition holds:

:2p-1}choose{p-1 equiv 1 pmod{p^4}.

Wolstenholme primes are named after Joseph Wolstenholme who proved Wolstenholme's theorem, the equivalent statement for "p"3 in 1862, following Charles Babbage who showed the equivalent for "p"2 in 1819.

The only known Wolstenholme primes so far are 16843 and 2124679 OEIS|id=A088164; any other Wolstenholme prime must be greater than 109. [http://www.loria.fr/~zimmerma/records/Wieferich.status] This data is consistent with the heuristic that the residue modulo "p"4 is a pseudo-random multiple of "p"3. This heuristic predicts that the number of Wolstenholme primes between "K" and "N" is roughly "ln ln N - ln ln K". The Wolstenholme condition has been checked up to 109, and the heuristic says that there should be roughly one Wolstenholme prime between 109 and 1024.

See also

* Wieferich prime
* Wilson prime
* Wall-Sun-Sun prime
* List of special classes of prime numbers

References

External links

* [http://primes.utm.edu/glossary/page.php?sort=Wolstenholme The Prime Glossary: Wolstenholme prime]
* [http://www.loria.fr/~zimmerma/records/Wieferich.status Status of the search for Wolstenholme primes]


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Wolstenholme-Primzahl — Der Satz von Wolstenholme (nach Joseph Wolstenholme) ist eine Aussage aus dem mathematischen Teilgebiet der Zahlentheorie. In einer möglichen Form besagt er: Ist eine Primzahl, so ist der Zähler der rationalen Zahl durch p2 teilbar.[1] …   Deutsch Wikipedia

  • Wolstenholme's theorem — In mathematics, Wolstenholme s theorem states that for a prime number p > 3, the congruence:{2p 1 choose p 1} equiv 1 , mod , p^3holds, where the parentheses denote a binomial coefficient. For example, with p = 7, this says that 1716 is one more …   Wikipedia

  • Satz von Wolstenholme — Der Satz von Wolstenholme (nach Joseph Wolstenholme) ist eine Aussage aus dem mathematischen Teilgebiet der Zahlentheorie. In einer möglichen Form besagt er: Ist eine Primzahl, so ist der Zähler der rationalen Zahl durch p2 teilbar.[1][2] …   Deutsch Wikipedia

  • Nombre de Wolstenholme — En mathématiques, un nombre premier p est appelé nombre premier de Wolstenholme si la condition suivante est vérifiée : Les nombres premiers de Wolstenholme sont nommés en l honneur du mathématicien Joseph Wolstenholme, qui a démontré le… …   Wikipédia en Français

  • Joseph Wolstenholme — (September 30, 1829 November 18, 1891) was an English mathematician.Wolstenholme was born in Eccles near Salford, Lancashire, England He is also known as Joe Wolstenholme, as he took many trips to Manchester as a young boy and lived in Oldham for …   Wikipedia

  • Wieferich prime — In number theory, a Wieferich prime is a prime number p such that p 2 divides 2 p − 1 − 1; compare this with Fermat s little theorem, which states that every odd prime p divides 2 p − 1 − 1. Wieferich primes were first described by Arthur… …   Wikipedia

  • Wall-Sun-Sun prime — In number theory, a Wall Sun Sun prime is a certain kind of prime number which is conjectured to exist although none are known. A prime p gt; 5 is called a Wall Sun Sun prime if p ² divides :Fleft(p left(fracp5 ight) ight)where F ( n ) is the n… …   Wikipedia

  • Wilson prime — A Wilson prime is a prime number p such that p ² divides ( p − 1)! + 1, where ! denotes the factorial function; compare this with Wilson s theorem, which states that every prime p divides ( p − 1)! + 1.The only known Wilson primes are 5, 13, and… …   Wikipedia

  • List of prime numbers — This is an incomplete list, which may never be able to satisfy particular standards for completeness. You can help by expanding it with reliably sourced entries. By Euclid s theorem, there are an infinite number of prime numbers. Subsets of the… …   Wikipedia

  • Théorème de Wolstenholme — Le théorème de Wolstenholme, démontré en 1862 par Joseph Wolstenholme, énonce que pour tout nombre premier , La congruence analogue modulo p2 avait été démontrée en 1819 par Charles Babbage. La preuve originelle de Wolstenholme n utilise que des… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”