Vogan

Vogan

Infobox Settlement
official_name = PAGENAME
other_name =
native_name =
nickname =
settlement_type =
motto =


imagesize =
image_caption =


flag_size =
image_

seal_size =
image_shield =
shield_size =
image_blank_emblem =
blank_emblem_type =
blank_emblem_size =


mapsize =
map_caption =


mapsize1 =
map_caption1 =
image_dot_

dot_mapsize =
dot_map_caption =
dot_x = |dot_y =
pushpin_

pushpin_label_position =bottom
pushpin_map_caption =Location in Togo
subdivision_type = Country
subdivision_name =
subdivision_type1 = Region
subdivision_name1 = Maritime Region
subdivision_type2 =
subdivision_name2 =
subdivision_type3 =
subdivision_name3 =
subdivision_type4 =
subdivision_name4 =
government_footnotes =
government_type =
leader_title =
leader_name =
leader_title1 =
leader_name1 =
leader_title2 =
leader_name2 =
leader_title3 =
leader_name3 =
leader_title4 =
leader_name4 =
established_title =
established_date =
established_title2 =
established_date2 =
established_title3 =
established_date3 =
area_magnitude =
unit_pref =Imperial
area_footnotes =
area_total_km2 =
area_land_km2 =
area_water_km2 =
area_total_sq_mi =
area_land_sq_mi =
area_water_sq_mi =
area_water_percent =
area_urban_km2 =
area_urban_sq_mi =
area_metro_km2 =
area_metro_sq_mi =
area_blank1_title =
area_blank1_km2 =
area_blank1_sq_mi =
population_as_of =
population_footnotes =
population_note =
population_total =
population_density_km2 =
population_density_sq_mi =
population_metro =
population_density_metro_km2 =
population_density_metro_sq_mi =
population_urban =
population_density_urban_km2 =
population_density_urban_sq_mi =
population_blank1_title =Ethnicities
population_blank1 =
population_blank2_title =Religions
population_blank2 =
population_density_blank1_km2 =
population_density_blank1_sq_mi =
timezone =
utc_offset =
timezone_DST =
utc_offset_DST =
latd=6 |latm=20|lats= |latNS=N
longd=1|longm=32|longs= |longEW=E
elevation_footnotes =
elevation_m =
elevation_ft =
postal_code_type =
postal_code =
area_code =
blank_name =
blank_info =
blank1_name =
blank1_info =
website =
footnotes =

Vogan is a town located in the Maritime Region of Togo. It lies approximately 45-60 km northeast of Lomé, the capital of Togo, and is the capital of Vo prefecture. It is known for its Friday market, which has one of the largest voodoo markets in West Africa.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Vogan — 6°18′N 1°20′E / 6.3, 1.333 …   Wikipédia en Français

  • Vogan — Original name in latin Vogan Name in other language Voga, Vogan, Woga, Wogan, Воган State code TG Continent/City Africa/Lome longitude 6.33333 latitude 1.53333 altitude 37 Population 20569 Date 2012 01 18 …   Cities with a population over 1000 database

  • David Vogan — Fields Mathematics Institutions M.I.T. Alma mater …   Wikipedia

  • David Vogan — David Alexander Vogan (* 1954) ist ein US amerikanischer Mathematiker, der sich mit Darstellungen von Lie Gruppen beschäftigt. Vogan wuchs in Belfonte (Pennsylvania) auf, studierte an der University of Chicago (bei Paul Sally, Bachelor Abschluss… …   Deutsch Wikipedia

  • List of Greyhawk deities — This is a list of deities from the Greyhawk campaign setting for the Dungeons Dragons fantasy role playing game. See also: List of Greyhawk characters Contents: Top · 0–9 · A B C D E F G H I J K L M N O P …   Wikipedia

  • E₈ — In mathematics, E8 is the name given to a family of closely related structures. In particular, it is the name of four exceptional simple Lie algebras as well as that of the six associated simple Lie groups. It is also the name given to the… …   Wikipedia

  • Kazhdan–Lusztig polynomial — In representation theory, a Kazhdan–Lusztig polynomial P y,w ( q ) is a member of a family of integral polynomials introduced in work of David Kazhdan and George Lusztig Harv|Kazhdan|Lusztig|1979. They are indexed by pairs of elements y , w of a… …   Wikipedia

  • Revenge of the Cybermen — 079 – Revenge of the Cybermen Doctor Who serial The Cybermen invade Space Station Nerva Cast …   Wikipedia

  • Zuckerman functor — This article is about the Zuckerman induction functor, which is not the same as the (Zuckerman) translation functor. In mathematics, a Zuckerman functor is used to construct representations of real reductive Lie groups from representations of… …   Wikipedia

  • Langlands classification — In mathematics, the Langlands classification is a classification of irreducible representations of a reductive Lie group G , suggested by Robert Langlands (1973). More precisely, it classifies the irreducible admissible ( g , K ) modules,for g a… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”