Spin(7)-manifold

Spin(7)-manifold

In mathematics, a Spin(7)-manifold is an eight-dimensional Riemannian manifold with the exceptional holonomy group Spin(7). Spin(7)-manifolds are Ricci-flat and admit a parallel spinor. They also admit a parallel 4-form which is a calibrating form for a special class of submanifolds called Cayley cycles. The deformation theory of such submanifolds was first investigated by R. McLean.

Examples of complete Spin(7)-metrics on non-compact manifolds were first constructed by Bryant and SalamonThe first examples of compact Spin(7)-manifolds were constructed by Dominic Joyce.

ee also

*"G"2 manifold
*Calabi-Yau manifold

References

*cite book | author=Dominic Joyce | year=2000 | title=Compact Manifolds with Special Holonomy | publisher=Oxford University Press | id=ISBN 0-19-850601-5 | authorlink=Dominic Joyce


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Spin structure — In differential geometry, a spin structure on an orientable Riemannian manifold allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematical …   Wikipedia

  • Spin foam — In physics, a spin foam is a topological structure made out of two dimensional faces that represents one of the configurations that must be summed to obtain a Feynman s path integral (functional integration) description of quantum gravity. It is… …   Wikipedia

  • Spin network — In physics, a spin network is a type of diagram which can be used to represent states and interactions between particles and fields in quantum physics. From a mathematical perspective, the diagrams are a concise way to represent multilinear… …   Wikipedia

  • Intersection form (4-manifold) — In mathematics, the intersection form of an oriented compact 4 manifold is a special symmetric bilinear form on the 2nd cohomology group of the 4 manifold. It reflects much of the topology of the 4 manifolds, including information on the… …   Wikipedia

  • G2 manifold — A G 2 manifold is a seven dimensional Riemannian manifold with holonomy group G 2. The group G 2 is one of the five exceptional simple Lie groups. It can be described as the automorphism group of the octonions, or equivalently, as a proper… …   Wikipedia

  • Sasakian manifold — In differential geometry, a Sasakian manifold is a contact manifold (M, heta) equipped with a special kind of Riemannian metric g, called a Sasakian metric.DefinitionA Sasakian metric is defined using the construction of the Riemannian cone .… …   Wikipedia

  • Complex spin structure — In mathematics a complex spin group Spin C ( n ) is a generalized form of a spin group. Although not all manifolds admit a spin group, all 4 manifolds admit a complex spin group.Scorpan, A., 2005 The Wild World of 4 Manifolds] The complex spin… …   Wikipedia

  • Holonomy — Parallel transport on a sphere depends on the path. Transporting from A → N → B → A yields a vector different from the initial vector. This failure to return to the initial vector is measured by the holonomy of the connection. In differential… …   Wikipedia

  • Rokhlin's theorem — In 4 dimensional topology, a branch of mathematics, Rokhlin s theorem states that if a smooth, compact 4 manifold M has a spin structure (or, equivalently, the second Stiefel Whitney class w 2( M ) vanishes), then the signature of its… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”