Rowbottom cardinal

Rowbottom cardinal

In set theory, a Rowbottom cardinal (named after Frederick Rowbottom) is a certain kind of large cardinal number.

An uncountable cardinal number &kappa; is said to be "Rowbottom" if for every function "f": [&kappa;] <&omega; &rarr; &lambda; (where &lambda; < &kappa;) there is a set "H" of order type &kappa; that is quasi-homogeneous for "f", i.e., for every "n", the "f"-image of the set of "n"-element subsets of "H" has countably many elements.

Every Ramsey cardinal is Rowbottom, and every Rowbottom cardinal is Jónsson. By a theorem of Kleinberg, the theories ZFC + “there is a Rowbottom cardinal” and ZFC + “there is a Jónsson cardinal” are equiconsistent.

In general, Rowbottom cardinals need not be large cardinals in the usual sense: Rowbottom cardinals could be singular. It is an open question whether ZFC + “aleph_{omega} is Rowbottom” is consistent. If it is, it has much higher consistency strength than the existence of a Rowbottom cardinal. The axiom of determinacy does imply that aleph_{omega} is Rowbottom (but contradicts the axiom of choice).

References

*


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Jónsson cardinal — In set theory, a Jónsson cardinal (named after Bjarni Jónsson) is a certain kind of large cardinal number.An uncountable cardinal number κ is said to be Jónsson if for every function f : [κ] …   Wikipedia

  • Frederick Rowbottom — is a logician and mathematician who got his PhD degree in 1964 from the University of Wisconsin Madison with a thesis entitled Large Cardinals and Small Constructible Sets under the supervision of Jerome Keisler. The large cardinal notion of… …   Wikipedia

  • Ramsey cardinal — In mathematics, a Ramsey cardinal (named after Frank P. Ramsey) is a certain kind of large cardinal number.Formally, a cardinal number kappa; such that for every function f : [ kappa;] < omega; rarr; {0, 1} (with [ kappa;] < omega; denoting the… …   Wikipedia

  • Grand cardinal — En mathématiques, et plus précisément en théorie des ensembles, un grand cardinal est un nombre cardinal transfini satisfaisant une propriété qui le distingue des ensembles constructibles avec l axiomatique usuelle (ZFC) tels que aleph zéro,… …   Wikipédia en Français

  • List of large cardinal properties — This page is a list of some types of cardinals; it is arranged roughly in order of the consistency strength of the axiom asserting the existence of cardinals with the given property. Existence of a cardinal number κ of a given type implies the… …   Wikipedia

  • List of mathematics articles (R) — NOTOC R R. A. Fisher Lectureship Rabdology Rabin automaton Rabin signature algorithm Rabinovich Fabrikant equations Rabinowitsch trick Racah polynomials Racah W coefficient Racetrack (game) Racks and quandles Radar chart Rademacher complexity… …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”