- Radioisotope piezoelectric generator
A Radioisotope piezoelectric generator converts energy stored in the
radioactive material directly into motion to generate electricity by the repeated deformation of apiezoelectric material. This approach creates a high-impedance source and, unlike chemical batteries, the devices will work in a very wide range of temperatures.Description
A piezoelectric cantilever is mounted directly above a base of the
radioactive isotope nickel-63. The Milli-Curie-level nickel-63 thin film generateselectron s alone. As the isotope decays, it emitsbeta particle s. As the cantilever accumulates the emitted electrons, it builds up a negative charge at the same time that the isotope film becomes positively charged. The beta particles essentially transfer electronic charge from thethin film to the cantilever. The opposite charges cause the cantilever to bend toward the isotope film. Just as the cantilever touches the thin-film isotope, the charge jumps the gap. That permits current to flow back onto the isotope, equalizing the charge and resetting the cantilever. As long as the isotope is decaying - a process that can last for decades - the tiny cantilever will continue its up-and-down motion. As the cantilever directly generates electricity when deformed, a charge pulse is released each time the cantilever cycles.Radioactive isotopes can continue to release energy over periods ranging from weeks to decades. The half-life of nickel-63, for example, is over 100 years. Thus, a battery using this isotope might continue to supply useful energy for at least half that time. Researchers have demonstrated devices with about 7% efficiency with high duty cycles of 120 Hz to low duty (every three hours) cycle self-reciprocating actuators
See also
*
Atomic battery
*Thermionic converter
*Betavoltaics
*Optoelectric nuclear battery
*Radioisotope piezoelectric generatorExternal links
* [http://www.news.cornell.edu/releases/Oct02/cantilever.ws.html Tiny atomic battery developed at Cornell]
Wikimedia Foundation. 2010.