Padé approximant

Padé approximant

Padé approximant is the "best" approximation of a function by a rational function of given order. Developed by Henri Padé, a Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. For these reasons Padé approximants are used extensively in computer calculations. They have also been applied to Diophantine approximation, though for sharp results "ad hoc" methods in some sense inspired by the Padé theory typically replace them.

Definition

Given a function "f" and two integers "m" ≥ 0 and "n" ≥ 0, the "Padé approximant" of order ("m", "n") is the rational function

:R(x)=frac{p_0+p_1x+p_2x^2+cdots+p_mx^m}{1+q_1 x+q_2x^2+cdots q_nx^n}

which agrees with f(x) to the highest possible order, which amounts to:f(0)=R(0),:f'(0)=R'(0),:f"(0)=R"(0),:vdots,:f^{(m+n)}(0)=R^{(m+n)}(0).,

Equivalently, if R(x) is expanded in a Taylor series at 0, its first "m" + "n" + 1 terms would cancel the first "m" + "n" + 1 terms of f(x), and as such:f(x)-R(x) = c_{m+n+1}x^{m+n+1}+c_{m+n+2}x^{m+n+2}+cdots

The Padé approximant is unique for given "m" and "n", that is, the coefficients p_0, p_1, dots, p_m, q_1, dots, q_n can be uniquely determined. It is for reasons of uniqueness that the zero-th order term at the denominator of R(x) was chosen to be 1, otherwise the numerator and denominator of R(x) would have been unique only up to multiplication by a constant.

The Padé approximant defined above is also denoted as

: [m/n] _f(x). ,

For given x, Padé approximants can be computed by the epsilon algorithm and also other sequence transformations from the partial sums

:s_n(x)=c_0 + c_1 x + c_2 x^2 + cdots + c_n x^n

of the Taylor series of f, i.e., we have

:c_k = frac{f^{(k)}(0)}{k!}.

It should be noted that f can also be a formal power series, and, hence, Padé approximants can also be applied to the summation of divergent series.

Riemann–Padé zeta function

To study the resummation of a divergent series, say

: sum_{z=1}^{infty}f(z), it can be useful to introduce the Padé or simply rational zeta function as

: zeta _{R}(s) = sum_{z=1}^{infty} frac{R(z)}{z^{s,

where

: R(x) = [m/n] _{f}(x),,

is just the Padé approximation of order ("m", "n") of the function "f"("x"). The zeta regularization value at "s" = 0 is taken to be the sum of the divergent series.

The functional equation for this Padé zeta function is

: sum_{j=0}^{n}p_{j}zeta _{R}(s-j)= sum_{j=0}^{m}q_{j}zeta_{0}(s-j),

where p_j and q_j are the coefficients in the Padé approximation. The subscript '0' means that the Padé is of order [0/0] and hence, we got the Riemann zeta function.

Generalizations

A Padé approximant approximates a function in one variable. An approximant in two variables is called a Chisholm approximant, in multiple variables a Canterbury approximant (after Graves-Morris at the University of Kent).

ee also

*Padé table

References

* Baker, G. A., Jr.; and Graves-Morris, P. " Padé Approximants". Cambridge U.P., 1996.
* Brezinski, C.; and Redivo Zaglia, M. "Extrapolation Methods. Theory and Practice". North-Holland, 1991
* Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Numerical recipes in C." Section 5.12, [http://www.nrbook.com/a/bookcpdf/c5-12.pdf available online] . Cambridge University Press.

External links

*
* [http://math.fullerton.edu/mathews/n2003/PadeApproximationMod.html Module for Padé Approximation by John H. Mathews]
* [http://demonstrations.wolfram.com/PadeApproximants/ Padé Approximants] by Oleksandr Pavlyk, The Wolfram Demonstrations Project.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Approximant De Padé — Le concept de l article doit son nom à Henri Padé (1863 1953) un mathématicien français. En mathématiques, et plus précisément en analyse complexe, l approximant de Padé est une méthode d approximation d une fonction analytique par …   Wikipédia en Français

  • Approximant de Pade — Approximant de Padé Le concept de l article doit son nom à Henri Padé (1863 1953) un mathématicien français. En mathématiques, et plus précisément en analyse complexe, l approximant de Padé est une méthode d approximation d une fonction… …   Wikipédia en Français

  • Approximant de padé — Le concept de l article doit son nom à Henri Padé (1863 1953) un mathématicien français. En mathématiques, et plus précisément en analyse complexe, l approximant de Padé est une méthode d approximation d une fonction analytique par …   Wikipédia en Français

  • Approximant de Padé — Le concept de l article doit son nom à Henri Padé (1863 1953) un mathématicien français. En mathématiques, et plus précisément en analyse complexe, l approximant de Padé est une méthode d approximation d une fonction analytique par une fonction… …   Wikipédia en Français

  • Padé table — In complex analysis, a Padé table is an array, possibly of infinite extent, of the rational Padé approximants : R m , n to a given complex formal power series. Certain sequences of approximants lying within a Padé table can often be shown to… …   Wikipedia

  • Approximant de Padé de la fonction exponentielle — Les travaux présentés dans cet article sont l œuvre d Henri Padé, un mathématicien français. En mathématiques, un approximant de Padé de la fonction exponentielle est une fraction rationnelle h(x) / k(x), où h(x) désigne un polynôme de degré p et …   Wikipédia en Français

  • Henri Padé — Naissance 17 décembre 1863 Abbeville (France) Décès 9 juillet 1953 (à 89 ans) Aix e …   Wikipédia en Français

  • Henri Padé — Henri Eugène Padé (December 17, 1863 – July 9, 1953) was a French mathematician, who is now remembered mainly for his development of approximation techniques for functions using rational functions. See also * Padé approximant * Padé table… …   Wikipedia

  • Henri Pade — Henri Padé Henri Padé Henri Eugène Padé (17 décembre, 1863 9 juillet, 1953) était un mathématicien français, qui est surtout connu pour son développement des méthodes d approximation des fonctions par des fonctions rationnelles. Il fut un élève… …   Wikipédia en Français

  • Householder's method — In numerical analysis, the class of Householder s methods are root finding algorithms used for functions of one real variable with continuous derivatives up to some order d+1 , where d will be the order of the Householder s method.The algorithm… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”