Carminati-McLenaghan invariants

Carminati-McLenaghan invariants

In general relativity, the Carminati-McLenaghan invariants or CM scalars are a set of 16 scalar curvature invariants for the Riemann tensor. This set is usually supplemented with at least two additional invariants.

Mathematical definition

The CM invariants consist of 6 real scalars plus 5 complex scalars, making a total of 16 invariants. They are defined in terms of the Weyl tensor C_{abcd} and its left (or right) dual }^star C}_{acdb}, the Ricci tensor R_{ab}, and the "trace-free Ricci tensor": S_{ab} = R_{ab} - frac{1}{4} , R , g_{ab}In the following, it may be helpful to note that if we regard {S^a}_b as a matrix, then {S^a}_m , {S^m}_b is the "square" of this matrix, so the "trace" of the square is {S^a}_b , {S^b}_a, and so forth.

The real CM scalars are
#R = {R^m}_m (the trace of the Ricci tensor)
#R_1 = frac{1}{4} , {S^a}_b , {S^b}_a
#R_2 = -frac{1}{8} , {S^a}_b , {S^b}_c , {S^c}_a
#R_3 = frac{1}{16} , {S^a}_b , {S^b}_c , {S^c}_d , {S^d}_a
#M_3 = frac{1}{16} , S^{bc} , S_{ef} left( C_{abcd} , C^{aefd} + }^star C}_{abcd} , }^star C}^{aefd} ight)
#M_4 = -frac{1}{32} , S^{ag} , S^{ef} , {S^c}_d , left( {C_{ac
^{db} , C_{befg} + {}^star C}_{ac^{db} , }^star C}_{befg} ight)The complex CM scalars are
#W_1 = frac{1}{8} , left( C_{abcd} + i , }^star C}_{abcd} ight) , C^{abcd}
#W_2 = -frac{1}{16} , left( {C_{ab
^{cd} + i , {}^star C}_{ab^{cd} ight) , {C_{cd
^{ef} , {C_{ef
^{ab}
#M_1 = frac{1}{8} , S^{ab} , S^{cd} , left( C_{acdb} + i , }^star C}_{acdb} ight)
#M_2 = frac{1}{16} , S^{bc} , S_{ef} , left( C_{abcd} , C^{aefd} - }^star C}_{acdb} , }^star C}^{aefd} ight) + frac{1}{8} , i , S^{bc} , S_{ef} , }^star C}_{abcd} , C^{aefd}
#M_5 = frac{1}{32} , S^{cd} , S^{ef} , left( C^{aghb} + i , }^star C}^{aghb} ight) , left( C_{acdb} , C_{gefh} + }^star C}_{acdb} , }^star C}_{gefh} ight)

The CM scalars have the following degrees:
#R is linear,
#R_1, , W_1 are quadratic,
#R_2, , W_2, , M_1 are cubic,
#R_3, , M_2, , M_3 are quartic,
#M_4, , M_5 are quintic.They can all be expressed directly in terms of the Ricci spinors and Weyl spinors, using Newman-Penrose formalism; see the link below.

Complete sets of invariants

In the case of spherically symmetric spacetimes or planar symmetric spacetimes, it is known that :R, , R_1, , R_2, , R_3, , Re (W_1), , Re (M_1), , Re (M_2):frac{1}{32} , S^{cd} , S^{ef} , C^{aghb} , C_{acdb} , C_{gefh}comprise a complete set of invariants for the Riemann tensor. In the case of vacuum solutions, electrovacuum solutions and perfect fluid solutions, the CM scalars comprise a complete set. Additional invariants may be required for more general spacetimes; determining the exact number (and possible syzygies among the various invariants) is an open problem.

ee also

*curvature invariant, for more about curvature invariants in (semi)-Riemannian geometry in general
*curvature invariant (general relativity), for other curvature invariants which are useful in general relativity

References

*cite journal | author=Carminati, J.; and McLenaghan, R. G. | title=Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space | journal=J. Math. Phys. | year=1991 | volume=32 | pages=3135–3140 | doi=10.1063/1.529470

External links

*The [http://grtensor.phy.queensu.ca/ GRTensor II website] includes a manual with definitions and discussions of the CM scalars.


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Инварианты Карминати — В общей теории относительности, инварианты Карминати  Макленахана (Carminati McLenaghan invariants, CM scalars) составляют один из наборов скалярных инвариантов кривизны. Они включают в себя 16 скаляров, получаемых из тензора Римана. Так как …   Википедия

  • Список известных учёных-релятивистов —   Это служебный список статей, созданный для координации работ по развитию темы.   Данное предупреждение не ус …   Википедия

  • Curvature invariant (general relativity) — Curvature invariants in general relativity are a set of scalars called curvature invariants that arise in general relativity. They are formed from the Riemann, Weyl and Ricci tensors which represent curvature and possibly operations on them such… …   Wikipedia

  • Curvature invariant — In Riemannian geometry and pseudo Riemannian geometry, curvature invariants are scalar quantities constructed from tensors that represent curvature. These tensors are usually the Riemann tensor, the Weyl tensor, the Ricci tensor and tensors… …   Wikipedia

  • Kretschmann scalar — In the theory of Lorentzian manifolds, particularly in the context of applications to general relativity, the Kretschmann scalar is a quadratic scalar invariant. It was introduced by Erich Kretschmann. DefinitionThe Kretschmann invariant is: K =… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • GRTensorII — is a Maple package designed for tensor computations, particularly in general relativity.This package was developed at Queen s University in Kingston, Ontario by Peter Musgrave, Denis Pollney and Kayll Lake. While there are many packages which… …   Wikipedia

  • Riemann tensor (general relativity) — The Riemann tensor (general relativity) is a mathematical object that describes gravitation and its effects in Einstein s theory of general relativity. Curvature and geodesic deviationThe Riemann tensor can be used to express the idea of… …   Wikipedia

  • Contributors to general relativity — General relativity Introduction Mathematical formulation Resources Fundamental concepts …   Wikipedia

  • Известные учёные-релятивисты —       Служебный список статей, созданный для координации работ по развитию темы.   Данное предупреждение не устанавл …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”