- Slitherlink
Slitherlink (also known as Fences, Takegaki, Loop the Loop, Loopy, Ouroboros, Suriza and Dotty Dilemma) is a
logic puzzle published byNikoli . As of 2005, 17 books consisting entirely of Slitherlink puzzles have been published by Nikoli.Rules
Slitherlink is played on a rectangular
lattice of dots. Some of the squares formed by the dots have numbers inside them. The objective is to connect horizontally and vertically adjacent dots so that the lines form a single loop with no loose ends. In addition, the number inside a square represents how many of its four sides are segments in the loop.
Other shapes can be used in lieu of the standard grid, as long as each tile has 4 sides. These include snowflake, penrose, laves and altair. They add complexity by increasing the possible paths from an intersection, but the same rules apply to their solution.olution methods
Whenever the number of lines around a cell matches the number in the cell, the other potential lines can be eliminated. This is usually done with an X.
Exactly 2 or 0 lines at each point
A key to many deductions in Slitherlink is that every point has either exactly two lines connected to it, or no lines. So if a point which is in the centre of the grid, not at an edge or corner, has three incoming lines which are X'd out, the fourth must also be X'd out. This is because the point cannot have just one line - it has no exit route from that point. Similarly, if a point on the edge of the grid, not at a corner, has two incoming lines which are X'd out, the third must also be X'd out. And if a corner of the grid has one incoming line which is X'd out, the other must also be X'd out.
Application of this simple rule leads to increasingly complex deductions. Recognition of these simple patterns will help greatly in solving Slitherlink puzzles.
Corners
* If "a 1 is in a corner", the actual corner's lines may be X'ed out, because a line that entered said corner could not leave it except by passing by the 1 again. This also applies if two lines leading into the 1-box at the same corner are X'ed out.
* If "a 3 is in a corner", the two outside edges of that box can be filled in because otherwise the rule above would have to be broken.
* If "a 2 is in a corner", two lines must be going away from the 2 at the border.Rules for squares with 3
* If "a 3 is adjacent to a 0", either horizontally or vertically, then all edges of that 3 can be filled except for the one touching the 0. In addition, the two lines perpendicular to the adjacent boxes can be filled.
* If "two 3s are adjacent" to each other horizontally or vertically, their common edge must be filled in, because the only other option is a closed oval that is impossible to connect to any other line. Second, the two outer lines of the group (parallel to the common line) must be filled in. Thirdly, the line through the 3s will always wrap around in an "S" shape. Therefore, the line between the 3s cannot continue in a straight line, and those sides which are in a straight line from the middle line can be X'd out.
* If a 3 is adjacent to a 0 diagonally, both sides of the 3 that meet the 0's corner must be filled. This is because if either of those sides were open, the line ending in the corner of the 0 would have no place to go. This is similar to the 3-in-a-corner rule.
* Similarly, if a 3 has a corner with X's in both directions going away from that corner, then both sides of the 3 that meet that corner must be filled. This is because if one of those two sides of the 3 were open, the other would have to be filled (because the 3 can only have one open side) but would meet 3 Xs at that corner, which is impossible because each point on the grid must have exactly 2 or 0 lines.
* If "a line reaches a corner of a 3", there must be lines on both sides of the 3 that said corner is not adjacent to, because if the 3's sole empty space were not adjacent to it, the corner would have three lines connected to it. Furthermore, the segment leading away from the 3 at the corner reached by the line must be empty; if it were filled, neither of the remaining 2 undetermined sides of the 3 would be able to contain a line.Diagonals of 3s and 2s
* If "two 3s are adjacent diagonally", the edges which do not run into the common point must be filled in.
* Similarly, if two 3s are in the same diagonal, but separated by any number of 2s (and only 2s) the outside edges of the 3s must be filled in, just as if they were adjacent diagonally.
* If there is a series of 2s in a diagonal line and an angled line meets the corner of the 2 at one end of the series, a matching angled line can be drawn all the way up the series.
* Here there is a diagonal series of 2s ending in a 3. This example combines several of the rules illustrated above. The 2 at the end of the diagonal has an angled line which includes one (but not both) of the sides at its outer corner. This implies that both of the outer sides of the three must be filled. This is because: (i) the right-end side of the lower 2 must be empty so (ii) either the left or top line of the lower 2 must be filled so (iii) the middle 2 cannot have lines on both its right and bottom side (otherwise 3 lines would meet at its bottom right corner, which is not allowed) so (iv) it must have a line on either its top or left side so (v) the 3 must have both its top and left sides filled (see above). A similar chain of logic can be applied to any diagonal of 2s ending in a 3.A rule for squares with 2
* When "a 2 has a line on one side and a side adjacent to that line which is X'd out", then a line must come into the 2 from the corner opposite to the one where the X and the line meet. This is because there must be one and only one other side filled in around the 2. Whether this second line is opposite the X or opposite the first line, it must exit the 2 at the corner opposite the junction of the X and the first line. The inverse of this is, if a line comes into a 2 at a corner, and one of the sides not adjacent to that corner is X'd out, then the side adjacent to that X that is not adjacent to the corner where the line comes in must be filled in.
Rules for squares with 1
* If "a line comes into a corner of a 1" and if of the three remaining directions that the line can continue, the one that is not a side of the 1 is a known blank, then the two sides of the 1 opposite that corner can be X'd out.
* If "two 1s are diagonally adjacent", then of the eight segments around those two cells, either the "inner" set of four segments sharing a common endpoint (the point shared by the 1s) or the other "outer" set of four segments must all be X'd out. Thus if any two inner or outer segments in one 1 are X'd, the respective inner or outer segments of the other 1 must also be X'd.An even number of ends in a closed region
In a closed-off region of the lattice (from which there is no path for any lines to "escape"), there cannot exist an odd number of unconnected segment-ends, since all of the segment-ends must connect to something. Often, this will rule out one or more otherwise feasible options.
Jordan curve theorem
In an exceptionally difficult puzzle, one may use the
Jordan curve theorem , which states that any open curve that starts and ends outside of a closed curve must intersect the closed curve an even number of times. In particular, this means that any row of the grid must have an even number of vertical lines and any column must have an even number of horizontal lines. When only one potential line segment in one of these groups is unknown, you can determine whether it is part of the loop or not with this theorem.A simple strategy to assist in using this theorem is to "paint" (sometimes called "shade") the outside and the inside areas. When you see two outside cells, or two inside cells be next to each other then you know that there is not a line between them.
History
"Slitherlink" is an original puzzle of Nikoli; it first appeared in
Puzzle Communication Nikoli #26 (June 1989). The editor combined two original puzzles contributed there. At first, every square contained a number.Videogames
Slitherlink video games have been featured for the
Nintendo DS handheld game console , withHudson Soft releasing "Puzzle Series Vol. 5: Slitherlink" in Japan onNovember 16 ,2006 , andAgetec including Slitherlink in its Nikoli puzzle compilation, "Brain Buster Puzzle Pak", released inNorth America onJune 17 ,2007 . [ [http://www.agetec.com/catalog/product_info.php?products_id=37 Puzzle - Brain Buster Puzzle Pak - Agetec, Inc ] ]ee also
*
List of Nikoli puzzle types
*References
External links
* [http://www.nikoli.co.jp/en/puzzles/slitherlink/ Nikoli's English page on "Slitherlink"]
* [http://fano.ics.uci.edu/cites/Document/On-the-NP-completeness-of-the-Slither-Link-Puzzle.html On the NP-completeness of the Slitherlink Puzzle] - Slitherlink isNP-complete
* [http://www.krazydad.com/slitherlink/ Krazydad.com] for more puzzles, including different shapes.
Wikimedia Foundation. 2010.