Cycle notation

Cycle notation

In combinatorial mathematics, the cycle notation is a useful convention for writing down a permutation in terms of its constituent cycles.[1] This is also called circular notation and the permutation called a cyclic or circular permutation.[2]

Contents

Definition

Let S be a finite set, and

 a_1,\ldots,a_k,\quad k\geq 2

be distinct elements of S. The expression

(a_1\ \ldots\ a_k)

denotes the cycle σ whose action is

 a_1\mapsto a_2\mapsto a_3\mapsto \ldots \mapsto a_k \mapsto a_1.

For each index i,

σ(ai) = ai + 1,

where ak + 1 is taken to mean a1.

There are k different expressions for the same cycle; the following all represent the same cycle:

 (a_1\ a_2\ a_3\ \ldots\ a_k) = (a_2\ a_3\ \ldots\ a_k\ a_1) = \cdots = (a_k\ a_1\ a_2\ \ldots\ a_{k-1}).\,

A 1-element cycle such as (3) is the identity permutation.[3] The identity permutation can also be written as an empty cycle, "()".[4]

Permutation as product of cycles

Let π be a permutation of S, and let

 S_1,\ldots, S_k\subset S,\quad k\in\mathbb{N}

be the orbits of π with more than 1 element. Consider an element Sj, j=1,\ldots,k, let nj denote the cardinality of Sj, | Sj | =nj. Also, choose an a_{1,j}\in S_j, and define

 a_{i+1,j} = \pi(a_{i,j}),\quad i\in\mathbb{N}.\,

We can now express π as a product of disjoint cycles, namely

 \pi = (a_{1,1}\ \ldots a_{n_1,1}) (a_{1,2}\ \ldots\ a_{n_2,2}) \ldots (a_{1,k}\ \ldots\ a_{n_k,k}).\,

Note that the usual convention in cycle notation is to multiply from left to right (in contrast with composition of functions, which is normally done from right to left). For example, the product (1\ 2)(2\ 3) is equal to (1\ 3\ 2) not (1\ 2\ 3).

Example

Here are the 24 elements of the symmetric group on {1,2,3,4} expressed using the cycle notation, and grouped according to their conjugacy classes:

 ( )\,
 (1 2), \;(1 3),\; (1 4),\; (2 3),\; (2 4),\; (3 4) (transpositions)
 (1 2 3),\; (1 3 2),\; (1 2 4),\; (1 4 2),\; (1 3 4),\; (1 4 3),\; (2 3 4),\; (2 4 3)
 (1 2)(3 4),\;(1 3)(2 4),\; (1 4)(2 3)
 (1 2 3 4),\; (1 2 4 3),\; (1 3 2 4),\; (1 3 4 2),\; (1 4 2 3),\; (1 4 3 2)

See also

Notes

  1. ^ Fraleigh 2002:89; Hungerford 1997:230
  2. ^ Dehn 1930:19
  3. ^ Hungerford 1997:231
  4. ^ Johnson 2003:691

References

  • Dehn, Edgar (1960) [1930], Algebraic Equations, Dover .
  • Fraleigh, John (2003), A first course in abstract algebra (7th ed.), Addison Wesley, p. 88–90, ISBN 978-0201763904 .
  • Hungerford, Thomas W. (1997), Abstract Algebra: An Introduction, Brooks/Cole, ISBN 978-0030105593 .
  • Johnson, James L. (2003), Probability and Statistics for Computer Science, Wiley Interscience, ISBN 978-0471326724 .

This article incorporates material from cycle notation on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Cycle (mathematics) — This article is about group theory. For cycles in homological algebra, see Chain complex#Fundamental terminology. For cycles in graph theory, see Cycle (graph theory). In mathematics, and in particular in group theory, a cycle is a permutation of …   Wikipedia

  • Cycle Sexagésimal Chinois — Le cycle sexagésimal (干支, pinyin : gānzhī) est un système chinois de numérotation des unités de temps basé sur la combinaison de deux séries de signes, les dix tiges célestes (天干, tiāngān) et les douze branches terrestres (地支, dìzhī),… …   Wikipédia en Français

  • Cycle sexagesimal chinois — Cycle sexagésimal chinois Le cycle sexagésimal (干支, pinyin : gānzhī) est un système chinois de numérotation des unités de temps basé sur la combinaison de deux séries de signes, les dix tiges célestes (天干, tiāngān) et les douze branches… …   Wikipédia en Français

  • Cycle sexagésimal — chinois Le cycle sexagésimal (干支, pinyin : gānzhī) est un système chinois de numérotation des unités de temps basé sur la combinaison de deux séries de signes, les dix tiges célestes (天干, tiāngān) et les douze branches terrestres (地支, dìzhī) …   Wikipédia en Français

  • Cycle sort — Example of cycle sort sorting a list of random numbers. Class Sorting algorithm Data structure Array Worst case performance Θ(n2) …   Wikipedia

  • Notation SMILES — Simplified Molecular Input Line Entry Specification Le Simplified Molecular Input Line Entry Specification ou SMILES est un langage symbolique de description de la structure des molécules chimiques sous forme de courtes chaînes de caractères… …   Wikipédia en Français

  • Cycle space — This article is about a concept in graph theory. For space allocated to bicycles, see segregated cycle facilities. In graph theory, an area of mathematics, a cycle space is a vector space defined from an undirected graph; elements of the cycle… …   Wikipedia

  • Cycle graph — This article is about connected, 2 regular graphs. For other uses, see Cycle graph (disambiguation). Cycle graph A cycle graph of length 6 Vertices n …   Wikipedia

  • Cycle sexagésimal chinois — Le cycle sexagésimal (干支, pinyin : gānzhī) est un système chinois de numérotation des unités de temps basé sur la combinaison de deux séries de signes, les dix tiges célestes (天干, tiāngān) et les douze branches terrestres (地支, dìzhī),… …   Wikipédia en Français

  • Cycle decomposition (graph theory) — For the notation used to express permutations, see Cycle decomposition (group theory). In graph theory, a cycle decomposition is a partitioning of the vertices of a graph into subsets, such that the vertices in each subset lie on a cycle.… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”