Edward N. Zalta

Edward N. Zalta

Edward N. Zalta, born 1952, is a Senior Research Scholar at the Center for the Study of Language and Information. He received his Ph.D. in philosophy from the University of Massachusetts - Amherst.

His research specialties include:

*Metaphysics and Epistemology
*Philosophy of Logic
*Philosophy of language and Intensional logic
*Philosophy of mathematics
*Philosophy of mind/Intentionality

Zalta has taught courses at Stanford University, Rice University, the University of Salzburg, and the University of Auckland, and has lectured in various universities in more than ten countries.

Zalta is also the Principal Editor of the Stanford Encyclopedia of Philosophy.

Zalta's most notable philosophical position is descended from the position of Alexius Meinong and Ernst Mally, who suggested that there are many non-existent objects. On Zalta's account, some objects (the ordinary concrete ones around us, like tables and chairs) "exemplify" properties, while others (abstract objects like numbers, and what others would call "non-existent objects", like the round square, and the mountain made entirely of gold) merely "encode" them. While the objects that exemplify properties are discovered through traditional empirical means, a simple set of axioms allows us to know about objects that encode properties. For every set of properties, there is exactly one object that encodes exactly that set of properties and no others. This allows for a formalized ontology.

* [http://mally.stanford.edu/zalta.html Zalta's Home Page]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Aristotelisch — Aristoteles Büste Aristoteles (griechisch Ἀριστoτέλης, * 384 v. Chr. in Stageira (Stagira) auf der Halbinsel Chalkidike; † 322 v. Chr. in Chalkis auf der Insel Euboia …   Deutsch Wikipedia

  • Der Philosoph — Aristoteles Büste Aristoteles (griechisch Ἀριστoτέλης, * 384 v. Chr. in Stageira (Stagira) auf der Halbinsel Chalkidike; † 322 v. Chr. in Chalkis auf der Insel Euboia …   Deutsch Wikipedia

  • Der Stagirit — Aristoteles Büste Aristoteles (griechisch Ἀριστoτέλης, * 384 v. Chr. in Stageira (Stagira) auf der Halbinsel Chalkidike; † 322 v. Chr. in Chalkis auf der Insel Euboia …   Deutsch Wikipedia

  • Poietische Wissenschaft (Aristoteles) — Aristoteles Büste Aristoteles (griechisch Ἀριστoτέλης, * 384 v. Chr. in Stageira (Stagira) auf der Halbinsel Chalkidike; † 322 v. Chr. in Chalkis auf der Insel Euboia …   Deutsch Wikipedia

  • Praktische Wissenschaft (Aristoteles) — Aristoteles Büste Aristoteles (griechisch Ἀριστoτέλης, * 384 v. Chr. in Stageira (Stagira) auf der Halbinsel Chalkidike; † 322 v. Chr. in Chalkis auf der Insel Euboia …   Deutsch Wikipedia

  • Stagirit — Aristoteles Büste Aristoteles (griechisch Ἀριστoτέλης, * 384 v. Chr. in Stageira (Stagira) auf der Halbinsel Chalkidike; † 322 v. Chr. in Chalkis auf der Insel Euboia …   Deutsch Wikipedia

  • Theoretische Wissenschaft (Aristoteles) — Aristoteles Büste Aristoteles (griechisch Ἀριστoτέλης, * 384 v. Chr. in Stageira (Stagira) auf der Halbinsel Chalkidike; † 322 v. Chr. in Chalkis auf der Insel Euboia …   Deutsch Wikipedia

  • Filosofía — El pensador, de Auguste Rodin, representación clásica de un hombre inmerso en sus pensamientos. Este artículo trata sobre la tradición filosófica occidental. Para la tradición filosófica oriental, véase Filosofía oriental. La filosofía (del latín …   Wikipedia Español

  • Analyse (Philosophie) — Analyse (griech.: analysis) bedeutet allgemein und in der Philosophie die Zergliederung eines Ganzen in seine Teile. Dies im Gegensatz zur Synthese. Die Analyse ist eine wissenschaftliche, hier philosophische Methode. Die Methode der Analyse… …   Deutsch Wikipedia

  • Computational epistemology — is a subdiscipline of formal epistemology that studies the intrinsic complexity of inductive problems for ideal and computationally bounded agents. In short, computational epistemology is to induction what recursion theory is to deduction.… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”