Cauchy surface

Cauchy surface

A Cauchy surface is a plane in space-time which is like an "instant" of time, giving the initial conditions on this plane detemines the future (and the past) uniquely.

Named after Augustin Louis Cauchy, a precise definition is that it is a subset in space-time which is intersected by every non-spacelike, inextensible curve, any causal curve, exactly once.

A partial Cauchy surface is a hypersurface which is intersected by any causal curve at most once.

Discussion

If S is a space-like surface, a collection of points where every pair is space-like separated, then D^+(S) is the future of S, which is all the points which can be reached from S while going forward in time on curves which are timelike or null. Similarly D^{-}(mathcal{S}), the past of S, is the same thing going back in time.

When there are no closed timelike curves, D+ and D- are two different regions. When the time dimension closes up on itself everywhere so that it makes a circle, the future and the past of S are the same and both include S. The Cauchy surface is defined pedantically in terms of intesections with inextendible curves in order to deal with this case of circular time. An inextendible curve is a curve with no ends--- either it goes on forever, remaining timelike or null, or it closes in on itself to make a circle, a closed non-spacelike curve.

When there are closed timelike curves, or even when there are closed non-spacelike curves, a Cauchy surface still determines the future, but the future includes the surface itself. This means that the initial conditions obey a constraint, and the Cauchy surface is not of the same character as when the future and the past are disjoint.

If there are no closed timelike curves, then given mathcal{S} a partial Cauchy surface and if D^{+}(mathcal{S})cup mathcal{S}cup D^{-}(mathcal{S}) = mathcal{M}, the entire manifold, then mathcal{S} is a Cauchy surface. Any surface of constant t in Minkowski space-time is a Cauchy surface, as is a .

Cauchy Horizon

If D^{+}(mathcal{S})cup mathcal{S}cup D^{-}(mathcal{S}) ot= mathcal{M} then there exists a Cauchy horizon between D^{pm}(mathcal{S}) and regions of the manifold not completely determined by information on mathcal{S}. A clear physical example of a Cauchy horizon is the second horizon inside a charged or rotating black hole. The outermost horizon is an event horizon, beyond which information cannot escape, but where the future is still determined from the conditions outside. Inside the inner horizon, the Cauchy horizon, the singularity is visible and to predict the future requires additional data about what comes out of the singularity.

Since a black hole Cauchy horizon only forms in a region where the geodesics are outgoing, in radial coordinates, in a region where the central singularity is repulsive, it is hard to imagine exactly how it forms. For this reason, Kerr and others suggest that a Cauchy horizon never forms, instead that the inner horizon is in fact a spacelike or timelike singularity.

A homogenous space-time with a Cauchy horizon is anti de Sitter space.

References

* P.K. Townsend, "Black Holes", lecture notes, Section 3.3, arXiv|archive=gr-qc|id=9707012, 1997.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Cauchy problem — The Cauchy problem in mathematics asks for the solution of a partial differential equation that satisfies certain side conditions which are given on a hypersurface in the domain. It is an extension of the initial value problem.Suppose that the… …   Wikipedia

  • Cauchy's theorem (geometry) — Cauchy s theorem is a theorem in geometry, named after Augustin Cauchy. It states that convex polytopes with congruent corresponding faces are congruent. This is a foundational result in rigidity theory. tatementLet P, Q subset Bbb R^3 be… …   Wikipedia

  • Surface (homoymie) — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. la surface est un espace géométrique, Voir aussi catégorie:surface (en géométrie) Lexique des surfaces Microsoft Surface : une table tactile. grande… …   Wikipédia en Français

  • Cauchy (crater) — lunar crater data caption=Cauchy crater is in the upper right quadrant between Rupes Cauchy and Rimae Cauchy . NASA photo. latitude=9.6 N or S=N longitude=38.6 E or W=E diameter=12 km depth=2.6 km colong=321 eponym=Augustin L. CauchyCauchy is a… …   Wikipedia

  • Surface minimale — Pour les articles homonymes, voir Surface (homonymie). En mathématiques et en physique, une surface minimale est une surface minimisant son aire. Ce minimum est réalisé sous une contrainte : un ensemble de points, le bord de la surface, est… …   Wikipédia en Français

  • Augustin Louis Cauchy — Infobox Scientist name = Augustin Louis Cauchy image width = 200px caption = Augustin Louis Cauchy birth date = birth date|1789|8|21|df=y birth place = Paris, France death date = death date and age|1857|5|23|1789|8|21|df=y death place = Sceaux,… …   Wikipedia

  • Yield surface — A yield surface is a five dimensional surface in the six dimensional space of stresses. The state of stress of inside the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its yield point and …   Wikipedia

  • Theoreme de Cauchy-Lipschitz — Théorème de Cauchy Lipschitz Pour les articles homonymes, voir Cauchy. Cauchy développe une première version du théorème de l article. Le …   Wikipédia en Français

  • Théorème de Cauchy-Lipschitz — Pour les articles homonymes, voir Cauchy. Cauchy développe une première version du théorème de l article. En mathématiques, et plus précisément en a …   Wikipédia en Français

  • Théorème de cauchy-lipschitz — Pour les articles homonymes, voir Cauchy. Cauchy développe une première version du théorème de l article. Le …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”