Isotopes of silver

Isotopes of silver

Naturally occurring silver (Ag) is composed of the two stable isotopes 107Ag and 109Ag with 107Ag being the more abundant (51.839% natural abundance). Standard atomic mass: 107.8682(2) u. Twenty-eight radioisotopes have been characterised with the most stable being 105Ag with a half-life of 41.29 days, 111Ag with a half-life of 7.45 days, and 112Ag with a half-life of 3.13 hours.

All of the remaining radioactive isotopes have half-lives that are less than an hour and the majority of these have half-lives that are less than 3 minutes. This element has numerous meta states with the most stable being 108mAg ("t"* 418 years), 110mAg ("t"* 249.79 days) and 106mAg ("t"* 8.28 days).

Isotopes of silver range in atomic weight from 93.943 u (94Ag) to 123.929 u (124Ag). The primary decay mode before the most abundant stable isotope, 107Ag, is electron capture and the primary mode after is beta decay. The primary decay products before 107Ag are palladium (element 46) isotopes and the primary products after are cadmium (element 48) isotopes.

The palladium isotope 107Pd decays by beta emission to 107Ag with a half-life of 6.5 million years. Iron meteorites are the only objects with a high enough palladium/silver ratio to yield measurable variations in 107Ag abundance. Radiogenic 107Ag was first discovered in the Santa Clara meteorite in 1978.

The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus Ag correlations observed in bodies, which have clearly been melted since the accretion of the solar system, must reflect the presence of live short-lived nuclides in the early solar system.
Standard atomic mass: 107.8682(2) u

Table

Notes

* The precision of the isotope abundances and atomic mass is limited through variations. The given ranges should be applicable to any normal terrestrial material.
* Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
* Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
* Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC which use expanded uncertainties.

References

* Isotope masses from [http://www.nndc.bnl.gov/amdc/index.html Ame2003 Atomic Mass Evaluation] by G. Audi, A.H. Wapstra, C. Thibault, J. Blachot and O. Bersillon in "Nuclear Physics" A729 (2003).
* Isotopic compositions and standard atomic masses from [http://www.iupac.org/publications/pac/2003/7506/7506x0683.html Atomic weights of the elements. Review 2000 (IUPAC Technical Report)] . "Pure Appl. Chem." Vol. 75, No. 6, pp. 683-800, (2003) and [http://www.iupac.org/news/archives/2005/atomic-weights_revised05.html Atomic Weights Revised (2005)] .
* Half-life, spin, and isomer data selected from these sources. Editing notes on this article's talk page.
** Audi, Bersillon, Blachot, Wapstra. [http://amdc.in2p3.fr/web/nubase_en.html The Nubase2003 evaluation of nuclear and decay properties] , Nuc. Phys. A 729, pp. 3-128 (2003).
** National Nuclear Data Center, Brookhaven National Laboratory. Information extracted from the [http://www.nndc.bnl.gov/nudat2/ NuDat 2.1 database] (retrieved Sept. 2005).
** David R. Lide (ed.), Norman E. Holden in "CRC Handbook of Chemistry and Physics, 85th Edition", online version. CRC Press. Boca Raton, Florida (2005). Section 11, Table of the Isotopes.


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Silver — This article is about the chemical element. For the color, see Silver (color). For other uses, see Silver (disambiguation). palladium ← silver → cadmium …   Wikipedia

  • silver — silverer, n. silverish, adj. silverless, adj. silverlike, adj. silverness, n. /sil veuhr/, n. 1. Chem. a white, ductile metallic element, used for making mirrors, coins, ornaments, table utensils, photographic chemicals, conductors, etc. Symbol:… …   Universalium

  • Silver — /sil veuhr/, n. Abba Hillel /ab euh/, 1893 1963, U.S. rabbi, born in Lithuania. * * * I Metallic chemical element, one of the transition elements, chemical symbol Ag, atomic number 47. It is a white, lustrous precious metal, valued for its beauty …   Universalium

  • Isotopes of cadmium — Naturally occurring cadmium (Cd) is composed of 8 isotopes. For two of them, natural radioactivity was observed, and three others are predicted to be radioactive but their decays were never observed, due to extremely long half life times. The two …   Wikipedia

  • Isotopes of palladium — Naturally occurring palladium (Pd) is composed of six isotopes. The most stable radioisotopes are 107Pd with a half life of 6.5 million years, 103Pd with a half life of 17 days, and 100Pd with a half life of 3.63 days. Eighteen other… …   Wikipedia

  • List of fictional elements, materials, isotopes and atomic particles — This list contains chemical elements, materials, isotopes or (sub)atomic particle that exist primarily in works of fiction (usually fantasy or science fiction). No actual periodic elements end in ite , though many minerals have names with this… …   Wikipedia

  • Abundances of the isotopes — ▪ Table Abundances of the isotopes element Z symbol A abundance   mass excess hydrogen 1 H 1 99.9885 7.289 2 0.0151 13.136 helium 2 He 3 0.000138 14.931 4 99.999863 2.425 lithium 3 Li 6 7.59 14.086 7 92.41 14.908 beryllium 4 Be 9 100  11.348… …   Universalium

  • Platinum — This article is about the chemical element. For other uses, see Platinum (disambiguation). iridium ← platinum → gold Pd ↑ Pt ↓ Ds …   Wikipedia

  • nitrogen group element — ▪ chemical elements Introduction  any of the chemical elements that constitute Group Va of the periodic table (see Figure >). The group consists of nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), and bismuth (Bi). The elements share… …   Universalium

  • Chemical element — The periodic table of the chemical elements A chemical element is a pure chemical substance consisting of one type of atom distinguished by its atomic number, which is the number of protons in its nucleus.[1] Familiar examples of …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”