- Graphite furnace atomic absorption
Graphite furnace atomic absorption spectrometry (GFAAS) (also known as Electrothermal Atomic Absorption Spectrometry (ETAAS)) is a type of
spectrometry that uses a graphite-coated furnace to vaporize the sample. Briefly, the technique is based on the fact that freeatoms will absorblight at frequencies orwavelengths characteristic of the element of interest (hence the name atomic absorption spectrometry). Within certain limits, the amount of light absorbed can be linearly correlated to the concentration of analyte present. Free atoms of most elements can be produced from samples by the application of high temperatures. In GFAAS, samples are deposited in a smallgraphite orpyrolytic carbon coated graphite tube, which can then be heated to vaporize and atomize the analyte. The atoms absorb ultraviolet or visible light and make transitions to higher electronic energy levels. Applying theBeer-Lambert law directly in AA spectroscopy is difficult due to variations in the atomization efficiency from thesample matrix , and nonuniformity of concentration and path length of analyte atoms (in graphite furnace AA). Concentration measurements are usually determined from a working curve after calibrating the instrument with standards of known concentration.ystem Components
GFAA spectrometry instruments have the following basic features: 1. a source of light (lamp) that emits resonance line radiation; 2. an atomization chamber (graphite tube) in which the sample is vaporized; 3. a monochromator for selecting only one of the characteristic wavelengths (visible or ultraviolet) of the element of interest; 4. a detector, generally a photomultiplier tube (light detectors that are useful in low-intensity applications), that measures the amount of absorption; 5. a signal processor-computer system (strip chart recorder, digital display, meter, or printer).
Mode of Operation
Most currently available GFAAs are fully controlled from a personal computer that has Windows-compatible software. Aqueous samples should be acidified (typically with nitric acid, HNO3) to a pH of 2.0 or less. Discoloration in a sample may indicate that metals are present in the sample. For example, a greenish color may indicate a high nickel content, or a bluish color may indicate a high copper content. A good rule to follow is to analyze clear samples first, and then analyze colored samples. It may be necessary to dilute highly colored samples before they are analyzed.
After the instrument has warmed up and been calibrated, a small aliquot (usually less than 100 microliters (µL) and typically 20 µL) is placed, either manually or through an automated sampler, into the opening in the graphite tube. Click to see a cross-sectional view of a graphite tube The sample is vaporized in the heated graphite tube; the amount of light energy absorbed in the vapor is proportional to atomic concentrations. Analysis of each sample takes from 1 to 5 minutes, and the results for a sample is the average of triplicate analysis.
References
* [http://fate.clu-in.org/graphite_index.asp?techtypeid=94 EPA Analytic Technology Encyclopedia]
* [http://www.anachem.umu.se/aas/gfaas.htm Research Group of Atomic Spectrometry]
Wikimedia Foundation. 2010.