MV-algebra

MV-algebra

In abstract algebra, a branch of pure mathematics, an MV-algebra is an algebraic structure with a binary operation oplus, a unary operation eg, and the constant 0, satisfying certain axioms. MV-algebras are models of Łukasiewicz logic; the letters MV refer to "multi-valued" logic of Łukasiewicz.

Definitions

An MV-algebra is an algebraic structure langle A, oplus, lnot, 0 angle, consisting of
* a non-empty set A,
* a binary operation oplus on A,
* a unary operation lnot on A, and
* a constant 0 denoting a fixed element of A,which satisfies the following identities:
* (x oplus y) oplus z = x oplus (y oplus z),
* x oplus 0 = x,
* x oplus y = y oplus x,
* lnot lnot x = x,
* x oplus lnot 0 = lnot 0, and
* lnot ( lnot x oplus y)oplus y = lnot ( lnot y oplus x) oplus x.

By virtue of the first three axioms, langle A, oplus, 0 angle is a commutative monoid. Being defined by identities, MV-algebras form a variety of algebras. The variety of MV-algebras is a subvariety of the variety of BL-algebras and contains all Boolean algebras.

An MV-algebra can equivalently be defined (Hájek 1998) as a prelinear commutative bounded integral residuated lattice langle L, wedge, vee, otimes, ightarrow, 0, 1 angle satisfying the additional identity x vee y = (x ightarrow y) ightarrow y.

Examples of MV-algebras

A simple numerical example is A= [0,1] , with operations x oplus y = min(x+y,1) and lnot x=1-x. In mathematical fuzzy logic, this MV-algebra is called the "standard MV-algebra", as it forms the standard real-valued semantics of Łukasiewicz logic.

The "trivial" MV-algebra has the only element 0 and the operations defined in the only possible way, 0oplus0=0 and lnot0=0.

The "two-element" MV-algebra is actually the two-element Boolean algebra {0,1}, with oplus coinciding with Boolean disjunction and lnot with Boolean negation.

Other finite linearly ordered MV-algebras are obtained by restricting the universe and operations of the standard MV-algebra to the set of n+1 equidistant real numbers between 0 and 1 (both included), that is, the set {0,1/n,2/n,dots,1}, which is closed under the operations oplus and lnot of the standard MV-algebra.

Another important example is "Chang's MV-algebra", consisting just of infinitesimals (with the order type ω) and their co-infinitesimals.

Relation to Łukasiewicz logic

Chang devised MV-algebras to study multi-valued logics, introduced by Jan Łukasiewicz in 1920. In particular, MV-algebras form the algebraic semantics of Łukasiewicz logic, as described below.

Given an MV-algebra "A", an "A"-valuation is a homomorphism from the algebra of propositional formulas (in the language consisting of oplus,lnot, and 0) into "A". Formulas mapped to 1 (or lnot0) for all "A"-valuations are called "A"-tautologies. If the standard MV-algebra over [0,1] is employed, the set of all [0,1] -tautologies determines so-called infinite-valued Łukasiewicz logic.

Chang's (1958, 1959) completeness theorem states that any MV-algebra equation holding in the standard MV-algebra over the interval [0,1] will hold in every MV-algebra. Algebraically, this means that the standard MV-algebra generates the variety of all MV-algebras. Equivalently, Chang's completeness theorem says that MV-algebras characterize infinite-valued Łukasiewicz logic, defined as the set of [0,1] -tautologies.

The way the [0,1] MV-algebra characterizes all possible MV-algebras parallels the well-known fact that identities holding in the two-element Boolean algebra hold in all possible Boolean algebras. Moreover, MV-algebras characterize infinite-valued Łukasiewicz logic in a manner analogous to the way that Boolean algebras characterize classical bivalent logic (see Lindenbaum-Tarski algebra).

References

*Chang, C. C. (1958) "Algebraic analysis of many-valued logics," "Transactions of the American Mathematical Society" 88: 476–490.
*------ (1959) "A new proof of the completeness of the Lukasiewicz axioms," "Transactions of the American Mathematical Society" 88: 74–80.
* Cignoli, R. L. O., D'Ottaviano, I. M. L., Mundici, D. (2000) "Algebraic Foundations of Many-valued Reasoning". Kluwer.
* Di Nola A., Lettieri A. (1993) "Equational characterization of all varieties of MV-algebras," "Journal of Algebra" 221: 123–131.
* Hájek, Petr (1998) "Metamathematics of Fuzzy Logic". Kluwer.

External links

* Stanford Encyclopedia of Philosophy: " [http://plato.stanford.edu/entries/logic-manyvalued/ Many-valued logic] " -- by Siegfried Gottwald.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Algebra tiles — Algebra tiles are known as mathematical manipulatives that allow students to better understand ways of algebraic thinking and the concepts of algebra. These tiles have proven to provide concrete models for elementary school, middle school, high …   Wikipedia

  • Algebra (Struktur) — Algebra über einem Körper berührt die Spezialgebiete Mathematik Abstrakte Algebra Lineare Algebra Kommutative Algebra ist Spezialfall von Algebraische Struktur Vektorraum …   Deutsch Wikipedia

  • Álgebra de Boole — (también llamada Retículas booleanas) en informática y matemática, es una estructura algebraica que esquematiza las operaciones lógicas Y, O , NO y Si (AND,OR,NOT,IF), así como el conjunto de operaciones unión, intersección y complemento. Se… …   Wikipedia Español

  • Algebra (disambiguation) — Algebra is a branch of mathematics.Algebra may also mean: * elementary algebra * abstract algebra * linear algebra * universal algebra * computer algebraIn addition, many mathematical objects are known as algebras. * In logic: ** Boolean algebra… …   Wikipedia

  • Algebra (Begriffsklärung) — Algebra bezeichnet in der Mathematik: Algebra, ein Teilgebiet der Mathematik mit den weiteren Teilgebieten Elementare Algebra Abstrakte Algebra Lineare Algebra Kommutative Algebra Universelle Algebra Computeralgebra Außerdem bezeichnet man mit… …   Deutsch Wikipedia

  • Algebra Blessett — Algebra (chanteuse) Algebra Nom Algebra Felicia Blessett Naissance 1976 à Atlanta, Géorgie (États Unis) Pays d’origine …   Wikipédia en Français

  • Álgebra de Baldor — Álgebra Portada del libro Álgebra, de Aurelio Baldor Autor Aurelio Baldor …   Wikipedia Español

  • algebră — ALGÉBRĂ s.f. 1. Teorie a operaţiilor privind numerele reale (pozitive ori negative) sau complexe şi rezolvarea ecuaţiilor prin substituirea prin litere a valorilor numerice şi a formulei generale de calcul numeric particular. ♦ Manual şcolar care …   Dicționar Român

  • Algebra (chanteuse) — Algebra Nom Algebra Felicia Blessett Naissance 1976 à Atlanta, Géorgie (États Unis) Pays d’origine Etats Unis Activ …   Wikipédia en Français

  • Algebra — (fra Arabisk al djebr ) er en gren af matematikken der kan beskrives som en genralisering og udvidelse af aritmetikken. Man kan lave en grov inddeling af algebra i disse felter: 10 Elementær algebra hvor man ser på egenskaberne ved de reelle tal …   Danske encyklopædi

  • Algebra — Sf Lehre von den mathematischen Gleichungen (usw.) erw. fach. (15. Jh.) Entlehnung. Entlehnt aus ml. algebra, das seinerseits auf arab. al ǧabr zurückgeht. Dieses ist Teil des Titels eines Lehrbuchs des arabischen Mathematikers Al Ḫwārizmī (9. Jh …   Etymologisches Wörterbuch der deutschen sprache

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”