Navarro–Frenk–White profile

Navarro–Frenk–White profile

The Navarro–Frenk–White profile or NFW profile is a spatial mass distribution of dark matter fitted to dark matter haloes identified in N-body simulations by Julio Navarro, Carlos Frenk and Simon White.[1] The NFW profile is one of the most commonly used model profiles for dark matter halos.[2]

Contents

Density distribution

In the NFW profile, the density of dark matter as a function of radius is given by:


\rho (r) = \frac{\rho_0}{\frac{r}{R_s}\left(1~+~\frac{r}{R_s}\right)^2}

where ρ0 and the "scale radius", Rs, are parameters which vary from halo to halo.

The integrated mass inside of some radius Rmax is


M = \int_0^{R_{max}} 4\pi r^2 \rho (r) dr = 4\pi \rho_0 R_s^3 \left[
\ln\left(\frac{R_s+R_{max}}{R_s}\right)-\frac{R_{max}}{R_s+R_{max}}\right]

The total mass is divergent, but it is often useful to take the edge of the halo to be the virial radius, Rvir , which is related to the "concentration parameter", c, and scale radius via

Rvir = cRs

In this case, the total mass in the halo is


M = \int_0^{R_{vir}} 4\pi r^2 \rho (r) dr = 4\pi \rho_0 R_s^3 \left[\ln(1+c) - \frac{c}{1+c}\right]

The value of c is roughly 10 or 15 for the Milky Way, and may range from 4 to 40 for halos of various sizes.

The integral of the squared density is


\int_0^{R_{max}} 4\pi r^2 \rho (r)^2 dr = \frac{4\pi}{3} R_s^3 \rho_0^2 
\left[1-\frac{R_s^3}{(R_s+R_{max})^3}\right]

so that the mean squared density inside of Rmax is


\langle \rho^2 \rangle_{R_{max}} = \frac{R_s^3\rho_0^2}{R_{max}^3}
\left[1-\frac{R_s^3}{(R_s+R_{max})^3}\right]

which for the virial radius simplifies to


\langle \rho^2 \rangle_{R_{vir}} = \frac{\rho_0^2}{c^3}
\left[1-\frac{1}{(1+c)^3}\right]
\approx \frac{\rho_0^2}{c^3}

and the mean squared density inside the scale radius is simply


\langle \rho^2 \rangle_{R_s} = \frac{7}{8}\rho_0^2

Dark matter simulations

The NFW profile is an approximation to the equilibrium configuration of dark matter produced in simulations of collisionless dark matter particles by numerous groups of scientists.[3] Before the dark matter virializes, the distribution of dark matter deviates from an NFW profile, and significant substructure is observed in simulations both during and after the collapse of the halos.

Alternative models, in particular the Einasto profile, have been shown to represent the dark matter profiles of simulated halos as well as or better than the NFW profile.[4] The Einasto profile has a finite (zero) central slope, unlike the NFW profile which has a divergent (infinite) central density. Because of the limited resolution of N-body simulations, it is not yet known which model provides the best description of the central densities of simulated dark-matter halos.

Observations of halos

The observations of both the Milky Way and M31 may be compatible with the NFW profile for the dark matter halo.[5]

References

  1. ^ Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M. (May 10, 1996). "The Structure of Cold Dark Matter Halos". The Astrophysical Journal 463: 563. arXiv:astro-ph/9508025. Bibcode 1996ApJ...462..563N. doi:10.1086/177173. 
  2. ^ Bertone, Gianfranco (2010). Particle Dark Matter: Observations, Models and Searches. Cambridge University Press. pp. 762. ISBN 13: 9780521763684. 
  3. ^ Y. P. Jing (20 May 2000). "The Density Profile of Equilibrium and Nonequilibrium Dark Matter Halos". The Astrophysical Journal 535 (1): 30–36. arXiv:astro-ph/9901340. Bibcode 2000ApJ...535...30J. doi:10.1086/308809. 
  4. ^ D. Merritt, A. Graham, B. Moore, J. Diemand, B. Terzić (20 December 2006). "Empirical Models for Dark Matter Halos". The Astronomical Journal 132 (6): 2685–2700. arXiv:astro-ph/0509417. Bibcode 2006AJ....132.2685M. doi:10.1086/508988. 
  5. ^ Klypin, Anatoly; Zhao, HongSheng; Somerville, Rachel S. (10 July 2002). "ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models". The Astrophysical Journal 573 (2): 597–613. arXiv:astro-ph/0110390. Bibcode 2002ApJ...573..597K. doi:10.1086/340656. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Navarro-Frenk-White profile — The Navarro Frenk White profile or NFW profile is a spatial distribution of dark matter predicted from N body simulations by Julio Navarro, Carlos Frenk and Simon White.cite journal|author = Navarro, Julio F.; Frenk, Carlos S.; White, Simon D.… …   Wikipedia

  • Singular isothermal sphere profile — The singular isothermal sphere (SIS) profile is the simplest parameterizationdn of the spatial distribution of matter in an astronomical system (e.g. galaxies, clusters of galaxies, etc.) [cite journal| first = C. | last = Keeton | year = 2002 |… …   Wikipedia

  • Julio Navarro (astrophysicist) — Julio F. Navarro (b. October 12, 1962, in Santiago del Estero, Argentina) is a professor of Astronomy (Ph.D. Universidad Nacional de Córdoba, Argentina) at the department of Physics and Astronomy in the University of Victoria. Dr. Navarro s… …   Wikipedia

  • Dark matter halo — Simulated dark matter halo from a cosmological N body simulation A dark matter halo is a hypothetical component of a galaxy, which extends beyond the edge of the visible galaxy and dominates the total mass. Since they consist of dark matter,… …   Wikipedia

  • Julio F. Navarro — Pour les articles homonymes, voir Navarro (homonymie). Julio F. Navarro (né le 12 octobre 1962 à Santiago del Estero, Argentine) est un professeur d’astronomie (Ph.D. Universidad Nacional de Córdoba, Argentine) du département de Physique et… …   Wikipédia en Français

  • Weak gravitational lensing — While the presence of any mass bends the path of light passing near it, this effect rarely produces the giant arcs and multiple images associated with strong gravitational lensing. Most lines of sight in the universe are thoroughly in the weak… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”