Kramers–Kronig relation

Kramers–Kronig relation

The Kramers–Kronig relations are mathematical properties, connecting the real and imaginary parts of any complex function which is analytic in the upper half plane. These relations are often used to relate the real and imaginary parts of response functions in physical systems because causality implies the analyticity condition is satisfied and conversely. [John S. Toll, "Causality and the Dispersion Relation: Logical Foundations", Physical Review, vol. "104", pp. 1760 - 1770 (1956).] The relation is named in honor of Ralph Kronig [R. de L. Kronig, "On the theory of the dispersion of X-rays," J. Opt. Soc. Am., vol. 12, pp. 547-557 (1926).] and Hendrik Anthony Kramers. [H.A. Kramers, "La diffusion de la lumiere par les atomes," Atti Cong. Intern. Fisica, (Transactions of Volta Centenary Congress) Como, vol. 2, p. 545-557 (1927) .]

Definition

For a complex function chi(omega) = chi_1(omega) + i chi_2(omega) of the complex variable omega , analytic in the upper half plane of omega and which vanishes as |omega| ightarrow infty, the Kramers–Kronig relations are given by

:chi_1(omega) = {1 over pi} mathcal{P} int limits_{-infty}^{infty} {chi_2(omega') over omega' - omega},domega'

and:chi_2(omega) = -{1 over pi} mathcal{P} int limits_{-infty}^{infty} {chi_1(omega') over omega' - omega},domega',

where mathcal{P} denotes the Cauchy principal value. We see that the real and imaginary parts of such a function are not independent, so that the full function can be reconstructed given just one of its parts.

Derivation

The proof begins with an application of the residue theorem for complex integration. Given any analytic function chi(omega) in the upper half plane, consider the integral

: oint {chi(omega') over omega'-omega},domega' = 0.

The contour encloses the upper half plane at infinity, the real axis and a hump over the pole (complex analysis) at omega = omega' leaving no poles inside, and so the integral vanishes. We decompose the integral into its contributions along each of these three contour segments. The segment at infinity vanishes since we assume chi(omega) vanishes as we take |omega| ightarrow infty. We are left with the segment along the real axis and the half-circle:

:mathcal{P} int limits_{-infty}^infty {chi(omega') over omega'-omega},domega' - i pi chi(omega) = 0.

Rearranging, we arrive at the compact form of the Kramers–Kronig relations,

:chi(omega) = {1 over i pi} mathcal{P} int limits_{-infty}^infty {chi(omega') over omega'-omega},domega'.

The single i in the denominator hints at the connection between the real and imaginary components. Finally, split chi(omega) and the equation into their real and imaginary parts to obtain the forms quoted above.

Physical interpretation and alternate form

We can apply the Kramers–Kronig formalism to response functions. In physics, the response function chi(t-t') describes how some property P(t) of a physical system responds to an applied force F(t'). For example, P(t) could be the angle of a pendulum and F(t) the applied force of a motor driving the pendulum motion. The response chi(t-t') must be zero for t since a system cannot respond to a force before it is applied. It can be shown that this causality condition implies the Fourier transform chi(omega) is analytic in the upper half plane. Additionally, if we subject a system to high frequency oscillatory forcing, there will be no time for the system to respond before the forcing has switched direction, and so chi(omega) vanishes as omega becomes large. From these physical considerations, we see that chi(omega) satisfies conditions needed for the Kramers–Kronig relations to apply.

The Kramers–Kronig relations have a physical interpretation. The imaginary part of a response function describes how a system dissipates energy, since it is out of phase with the driving force. The Kramers–Kronig relations imply that observing the dissipative response of a system is sufficient to determine its in-phase (reactive) response, and vice versa.

The formulas above are not useful for reconstructing physical responses, as the integrals run from -infty to infty, implying we know the response at negative frequencies. Fortunately, in most systems, the positive frequency-response determines the negative-frequency response because chi(omega) is the Fourier transform of a real quantity chi(t-t'), so chi(-omega) = chi^*(omega). This means chi_1(omega) is an even function of frequency and chi_2(omega) is odd.

Using these properties, we can collapse the integration ranges to [0,infty). Consider the first relation giving the real part chi_1(omega). Transform the integral into one of definite parity by multiplying the numerator and denominator of the integrand by omega' + omega and separating:

: chi_1(omega) = {1 over pi} mathcal{P} int limits_{-infty}^infty {omega' chi_2(omega') over omega'^2 - omega^2}, domega' + {omega over pi} mathcal{P} int limits_{-infty}^infty {chi_2(omega') over omega'^2 - omega^2},domega'.

Since chi_2(omega) is odd, the second integral vanishes, and we are left with

:chi_1(omega) = {2 over pi} mathcal{P} int limits_{0}^{infty} {omega' chi_2(omega') over omega'^2 - omega^2},domega'.

The same derivation for the imaginary part gives

:chi_2(omega) = -{2 over pi} mathcal{P} int limits_{0}^{infty} {omega chi_1(omega') over omega'^2 - omega^2},domega' = -{2 omega over pi} mathcal{P} int limits_{0}^{infty} {chi_1(omega') over omega'^2 - omega^2},domega'.

These are the Kramers–Kronig relations useful for physical response functions.

ee also

* Hilbert transform
* Linear response function
* Dispersion (optics)

References

Inline

General

* Mansoor Sheik-Bahae: "Nonlinear Optics Basics. Kramers–Kronig Relations in Nonlinear Optics", in: Robert D. Guenther (Ed.): "Encyclopedia of Modern Optics", Academic Press, Amsterdam 2005, ISBN 0-12-227600-0
* Valerio Lucarini, Jarkko J. Saarinen, Kai-Erik Peiponen, and Erik M. Vartiainen : "Kramers-Kronig relations in Optical Materials Research", Springer, Heidelberg, 2005, ISBN 3-540-23673-2
* J. D. Jackson, "Classical Electrodynamics", 2nd edition, Wiley, New York (1975), Sec. 7.10, ISBN 0-471-43132-X.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Kramers-Kronig-Relation — Die Kramers Kronig Beziehungen (nach Hendrik Anthony Kramers und Ralph Kronig) setzen Real und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen einen Spezialfall der Hilbert… …   Deutsch Wikipedia

  • Kramers-Krönig-Relation — Die Kramers Kronig Beziehungen (nach Hendrik Anthony Kramers und Ralph Kronig) setzen Real und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen einen Spezialfall der Hilbert… …   Deutsch Wikipedia

  • Kramers-Kronig-Beziehungen — Die Kramers Kronig Beziehungen, auch Kramers Kronig Relation, setzen Real und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen damit einen Spezialfall der Hilbert Transformation… …   Deutsch Wikipedia

  • Kramers-Kronig-Relationen — Die Kramers Kronig Beziehungen (nach Hendrik Anthony Kramers und Ralph Kronig) setzen Real und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen einen Spezialfall der Hilbert… …   Deutsch Wikipedia

  • Kramers-Kronig-Transformation — Die Kramers Kronig Beziehungen (nach Hendrik Anthony Kramers und Ralph Kronig) setzen Real und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen einen Spezialfall der Hilbert… …   Deutsch Wikipedia

  • Relations de kramers-kronig — En mathématiques et physique, les relations de Kramers Kronig, nommées en l honneur de Hendrik Anthony Kramers[1] et Ralph Kronig[2], décrivent la relation qui existe entre la partie réelle et la partie imaginaire de certaines fonctions complexes …   Wikipédia en Français

  • Relations de Kramers-Kronig — En mathématiques et physique, les relations de Kramers Kronig, nommées en l honneur de Hendrik Anthony Kramers[1] et Ralph Kronig[2], décrivent la relation qui existe entre la partie réelle et la partie imaginaire de certaines fonctions complexes …   Wikipédia en Français

  • Kronig — Ralph Kronig Ralph Kronig (* 3. Oktober 1904 in Dresden; † 16. November 1995 in Zürich) war ein deutscher Physiker. Er wurde für seine Entdeckung des Teilchenspins und für seine Theorie der Röntgenabsorptionsspektroskopie bekan …   Deutsch Wikipedia

  • Ralph Kronig — was a German American physicist (March 10, 1904 November 16, 1995). He is noted for the discovery of particle spin and for his theory of x ray absorption spectroscopy. His theories include the Kronig Penney model and the Kramers–Kronig… …   Wikipedia

  • Ralph Kronig — Ralph de Laer Kronig, geboren als Ralph Kronig, (* 10. März 1904 in Dresden; † 16. November 1995) war ein deutsch US amerikanischer theoretischer Physiker. Er entdeckte den Teilchenspin vor Uhlenbeck und Goudsmit, veröffentlichte dies aber nicht …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”