Mie–Gruneisen equation of state

Mie–Gruneisen equation of state

The Mie-Gruneisen equation of state is a relation between the pressure and the volume of a solid at a given temperature. It is often used to determine the pressure in a shock-compressed solid. Several variations of the Mie-Gruneisen equation of state are in use.

Contents

Expressions for the Mie-Gruneisen equation of state

A temperature-corrected version that is used in computational mechanics has the form[1] (see also [2], p.61)

 
   p = \frac{\rho_0 C_0^2 (\eta -1)
              \left[\eta - \frac{\Gamma_0}{2}(\eta-1)\right]}
             {\left[\eta - S_{\alpha}(\eta-1)\right]^2} + \Gamma_0 E;\quad
   \eta := \cfrac{\rho}{\rho_0}

where C0 is the bulk speed of sound,ρ0 is the initial density, ρ is the current density, Γ0 is the Gruneisen's gamma at the reference state, Sα = dUs / dUp is a linear Hugoniot slope coefficient, Us is the shock wave velocity, Up is the particle velocity, and E is the internal energy per unit reference specific volume.

A rough estimate of the change in internal energy can be computed using


    E = \frac{1}{V_0} \int C_v dT \approx \frac{C_v (T-T_0)}{V_0}

where V0 = 1 / ρ0 is the reference specific volume at temperature T = T0, and Cv is the specific heat at constant volume. In many simulations, it is assumed that Cp and Cv are equal.

Parameters for various materials

material C0 (m/s) Sα Γ0 (T < T1) Γ0 (T > = T1) T_1 (K)
Copper 3933 [3] 1.5 [3] 1.99 [4] 2.12 [4] 700

See also

References

  1. ^ Zocher, M.A.; Maudlin, P.J. (2000), "An evaluation of several hardening models using Taylor cylinder impact data", Conference: COMPUTATIONAL METHODS IN APPLIED SCIENCES AND ENGINEERING, BARCELONA (ES), 09/11/2000--09/14/2000, http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=764004, retrieved 2009-05-12 
  2. ^ Wilkins, M.L. (1999), Computer simulation of dynamic phenomena, http://books.google.co.uk/books?hl=en, retrieved 2009-05-12 
  3. ^ a b Mitchell, A.C.; Nellis, W.J. (1981), "Shock compression of aluminum, copper, and tantalum", Journal of Applied Physics 52: 3363, http://link.aip.org/link/?JAPIAU/52/3363/1, retrieved 2009-05-12 
  4. ^ a b MacDonald, R.A.; MacDonald, W.M. (1981), "Thermodynamic properties of fcc metals at high temperatures", Physical Review B 24 (4): 1715–1724, doi:10.1103/PhysRevB.24.1715 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Mie-Grüneisen-Gleichung — Die Mie Grüneisen Zustandsgleichung (engl. Mie Gruneisen equation of state) ist eine Zustandsgleichung der Physik, die für hochverdichtete Materie einen speziellen funktionalen Zusammenhang zwischen der Dichte, dem Druck und der Temperatur… …   Deutsch Wikipedia

  • Mie-Grüneisen-Zustandsgleichung — Die Mie Grüneisen Zustandsgleichung (engl. Mie Gruneisen equation of state) ist eine Zustandsgleichung der Physik, die für hochverdichtete Materie einen speziellen funktionalen Zusammenhang zwischen der Dichte, dem Druck und der Temperatur… …   Deutsch Wikipedia

  • Zustandsgleichung von Mie-Grüneisen — Die Mie Grüneisen Zustandsgleichung (engl. Mie Gruneisen equation of state) ist eine Zustandsgleichung der Physik, die für hochverdichtete Materie einen speziellen funktionalen Zusammenhang zwischen der Dichte, dem Druck und der Temperatur… …   Deutsch Wikipedia

  • Eduard Grüneisen — Infobox Person name = Eduard Grüneisen birth date = May 26, 1877 birth place = Giebichenstein, Germany death date = April 5, 1949 death place = Marburg, Germany nationality = GermanEduard Grüneisen (May 26, 1877 April 5, 1949) was a German… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”