- Physical optics
In

physics ,**physical optics**, or**wave optics**, is the branch ofoptics which studiesinterference ,diffraction ,polarization , and other phenomena for which the ray approximation ofgeometric optics is not valid. This usage tends not to include effects such asquantum noise inoptical communication , which is studied in the sub-branch ofcoherence theory .**The physical optics approximation**"Physical optics" is also the name of a

high frequency approximation (short-wavelength approximation ) commonly used in optics,electrical engineering andapplied physics . In this context, it is an intermediate method between geometric optics, which ignoreswave effects, and full waveelectromagnetism , which is a precisetheory . The word "physical" means that it is more physical thangeometric or ray optics and not that it is an exact physical theory.This approximation consists of using ray optics to estimate the field on a surface and then integrating that field over the surface to calculate the transmitted or scattered field. This resembles the

Born approximation , in that the details of the problem are treated as a perturbation.In optics, it is a standard way of estimating diffraction effects. In

radio , this approximation is used to estimate some effects that resemble optical effects. It models many interference, diffraction and polarization effects but not the dependence of diffraction on polarization. Since it is a high frequency approximation, it is often more accurate in optics than for radio.In optics, it typically consists of integrating ray estimated field over a lens, mirror or aperture to calculate the transmitted or scattered field.

In

radar scattering it usually means taking the current that would be found on atangent plane of similar material as the current at each point on the front, i. e. the geometrically illuminated part, of ascatter er. Current on the shadowed parts is taken as zero. The approximate scattered field is then obtained by an integral over these approximate currents. This is useful for bodies with large smooth shapes and for lossy (low reflection) surfaces.The ray optics field or current is generally not accurate near edges or shadow boundaries, unless supplemented by diffraction and

creeping wave calculations.**ee also***

Diffraction

*Electromagnetic modeling

*History of optics

*Interference

*Polarization **References***cite book |author=Serway, Raymond A.; Jewett, John W. | title=Physics for Scientists and Engineers (6th ed.) | publisher=Brooks/Cole | year=2004 | id=ISBN 0-534-40842-7

*cite book | author=Akhmanov, A ; Nikitin, S. Yu | title=Physical Optics |publisher= Oxford University Press |year=1997| id=ISBN 0-19-851795-5

*"A Double-Edge-Diffraction Gaussian-Series Method for Efficient Physical Optics Analysis of Dual-Shaped-Reflector Antennas", "Antennas and Propagation", August 2005, p. 2597

*"The physical optics method in electromagnetic scattering" J. S. Asvestas, Journal of Mathematical Physics, February 1980, Volume 21, Issue 2, pp. 290-299

*Wikimedia Foundation.
2010.*