Seiberg duality

Seiberg duality

In quantum field theory, the Seiberg duality, discovered by Nathan Seiberg, is an S-duality relating two different supersymmetric QCDs in the low-energy (infrared) limit. This duality is only exact in the IR limit; in other words, the two theories are not identical, but their IR universality classes happen to match.

In particular, it relates an "N"=1 theory with SU(Nc) as the gauge group and Nf flavors of fundamental chiral multiplets and Nf flavors of antifundamental chiral multiplets in the chiral limit (no bare masses) with an N=1 chiral QCD with Nf-Nc colors and Nf flavors, where Nc and Nf are positive integers satisfying

:{1over 3}N_f < N_c < {2over 3}N_f .

Being an S-duality, it relates the strong coupling regime with the weak coupling regime, and interchanges chromoelectric fields with chromomagnetic fields, and chromoelectric charges with chromomagnetic monopoles. In particular, the Higgs phase is dual to the confinement phase as in the dual superconducting model.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Seiberg–Witten invariant — In mathematics, Seiberg–Witten invariants are invariants of compact smooth 4 manifolds introduced by harvtxt|Witten|1994, using the Seiberg Witten theory studied by harvs|txt=yes|last=Seiberg|last2=Witten|year1=1994a|year2=1994b during their… …   Wikipedia

  • Nathan Seiberg — at Harvard University Born September …   Wikipedia

  • S-duality — In theoretical physics, S duality (also a strong weak duality) is an equivalence of two quantum field theories, string theories, or M theory. An S duality transformation maps the states and vacua with coupling constant g in one theory to states… …   Wikipedia

  • Montonen–Olive duality — In theoretical physics, Montonen–Olive duality is the oldest known example of S duality or a strong weak duality. It generalizes the electro magnetic symmetry of Maxwell s equations. It is named after Finnish Claus Montonen and British David… …   Wikipedia

  • Montonen-Olive duality — In theoretical physics, Montonen Olive duality is the oldest known example of S duality or a strong weak duality. It generalizes the electro magnetic symmetry of Maxwell s equations. It is named after Finnish Claus Montonen and British David… …   Wikipedia

  • Theorie de Seiberg-Witten — Théorie de Seiberg Witten En physique théorique, la théorie de Seiberg Witten désigne la méthode employée par Seiberg et Witten pour calculer exactement la théorie effective des théories de jauge supersymétriques avec supersymétrie étendue . En… …   Wikipédia en Français

  • Théorie de seiberg-witten — En physique théorique, la théorie de Seiberg Witten désigne la méthode employée par Seiberg et Witten pour calculer exactement la théorie effective des théories de jauge supersymétriques avec supersymétrie étendue . En utilisant les propriétés d… …   Wikipédia en Français

  • Théorie de Seiberg-Witten — En physique théorique, la théorie de Seiberg Witten désigne la méthode employée par Seiberg et Witten pour calculer exactement la théorie effective des théories de jauge supersymétriques avec supersymétrie étendue . En utilisant les propriétés d… …   Wikipédia en Français

  • K-theory (physics) — In string theory, the K theory classification refers to a conjectured application of K theory (in abstract algebra and algebraic topology) to superstrings, to classify the allowed Ramond Ramond field strengths as well as the charges of stable D… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”