Semi-Thue system

Semi-Thue system

In computer science and mathematics a Semi-Thue system (also called a string rewriting system [Book and Otto, p. 36] ) is a type of term rewriting system. It is named after the Norwegian mathematician Axel Thue, who introduced systematic treatment of string rewriting systems in the early 20th century.

Definition

A Semi-Thue system is a tuple (Sigma, R) where
* Sigma is a finite alphabet. Elements of the set Sigma^* of finite (possibly empty) strings on Sigma are called "words".
* R is a binary relation on Sigma^*, i.e., R subseteq Sigma^* imes Sigma^*. Each element (u,v) in R is called a "rule" and is usually written u ightarrow v.

A Semi-Thue system (Sigma, R) induces a "one-step rewrite relation" Rightarrow_R on Sigma^*, which formalises the notion of rewriting a string s by replacing a substring u within it: : forall s,t in Sigma^*, (s Rightarrow_R t iff exist x,y,u,v in Sigma^*, s equiv xuy, t equiv xvy, u ightarrow v).

A "derivation" in the Semi-Thue system is then a (finite or infinite) sequence of words produced by starting with an initial word s_0 in Sigma^* and repeatedly rewriting it by making one substring-replacement at a time:

:s_0 Rightarrow_R s_1 Rightarrow_R s_2 Rightarrow_R ldots

If the relation R is symmetric, i.e., forall u, v in Sigma^*, (u ightarrow v) Rightarrow (v ightarrow u) ;, then the system is called a Thue system.

A Semi-Thue system is a special type of Post canonical system. A semi-Thue system is also a term-rewriting system — one that has monadic words ending in the same variable as left- and right-hand side terms [Nachum Dershowitz and Jean-Pierre Jouannaud. [http://citeseer.ist.psu.edu/dershowitz90rewrite.html Rewrite Systems] (1990) p. 6] , e.g. a term rule f_2(f_1(x)) ightarrow g(x) is equivalent with the string rule f_1f_2 ightarrow g.

History and importance

Semi-Thue systems were developed as part of a program to add additional constructs to logic, so as to create systems such as propositional logic, that would allow general mathematical theorems to be expressed in a formal language, and then proven and verified in an automatic, mechanical fashion. The hope was that the act of theorem proving could then be reduced to a set of defined manipulations on a set of strings. It was subsequently realized that semi-Thue systems are isomorphic to unrestricted grammars, which in turn are known to be isomorphic to Turing machines. And although this program of research succeeded in that computers can now be used to verify the proofs of theorems, it also failed in a spectacular way: a computer cannot distinguish between an interesting theorem, and a boring one.

At the suggestion of Alonzo Church, Emil Post in a paper published in 1947, first proved "a certain Problem of Thue" to be unsolvable, what Martin Davis states as "...the first unsolvability proof for a problem from classical mathematics -- in this case the word problem for semigroups." (Undecidable p. 292)

Davis [ibid] asserts that the proof was offered independently by A. A. Markov (C. R. (Doklady) Acad. Sci. U.S.S.R. (n.s.) 55(1947), pp. 583-586.

The Word problem for Semi-Thue systems

The word problem for Semi-Thue systems can be stated as follows: Given a Semi-Thue system T:=(Sigma, R) and two words u, v in Sigma^*, can u be transformed into v by applying rules from R? This problem is undecidable, i.e. there is no general algorithm for solving this problem. This even holds if we limit the input to finite systems.

Martin Davis offers the lay reader a two-page proof in his article "What is a Computation?" pp. 258-259 with commentary p. 257. Davis casts the proof in this manner: "invent [a word problem] whose solution would lead to a solution to the halting problem."

See also

* Post canonical system
* Unrestricted grammar
* L-system

Notes

References

* Martin Davis ed. (1965), "The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions", Raven Press, New York.
* Emil Post (1947), "Recursive Unsolvability of a Problem of Thue," reprinted in "The Undecidable" pp. 293ff from The Journal of Symbolic Logic, vol. 12 (1947) pp. 1-11.
* Ronald V. Book and Friedrich Otto, "String-rewriting Systems", Springer (1993).


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Semi-Thue-System — (oder auch Umformungssystem, Wortersetzungssystem oder Stringersetzungssystem) ist in der Theoretischen Informatik ein Regelsystem zur Transformation von Wörtern. Im Gegensatz zu formalen Grammatiken liegt aber nur ein Alphabet mit… …   Deutsch Wikipedia

  • Semi-Thue System — (oder auch Umformungssystem) ist in der Theoretischen Informatik ein Regelsystem zur Manipulation von Zeichenketten, also eine formale Grammatik. Motiviert durch David Hilberts Vortrag im Jahre 1900 und den Ausführungen über eine logische… …   Deutsch Wikipedia

  • Semi Thue System — (oder auch Umformungssystem) ist in der Theoretischen Informatik ein Regelsystem zur Manipulation von Zeichenketten, also eine formale Grammatik. Motiviert durch David Hilberts Vortrag im Jahre 1900 und den Ausführungen über eine logische… …   Deutsch Wikipedia

  • Thue-System — Semi Thue System (oder auch Umformungssystem) ist in der Theoretischen Informatik ein Regelsystem zur Manipulation von Zeichenketten, also eine formale Grammatik. Motiviert durch David Hilberts Vortrag im Jahre 1900 und den Ausführungen über eine …   Deutsch Wikipedia

  • Thue — ist der Name folgender Personen: Axel Thue (1863–1922), norwegischer Mathematiker Jeffrey Thue (* 1969), kanadischer Ringer Thue bezeichnet: Thue (Fluss) (polnisch Tywa), ein Fluss in Hinterpommern Siehe auch: Semi Thue System Satz von Thue… …   Deutsch Wikipedia

  • Thue-Morse-Folge — Die Folgenglieder der Morsefolge (auch Morse Thue Sequenz oder Thue Morse Sequenz genannt) bestehen aus Wörtern, welche aus 0 und 1 gebildet werden und wie folgt definiert sind: Das erste Folgenglied ist 0. Wenn w das n te Folgenglied ist, so ist …   Deutsch Wikipedia

  • Thue-Morse-Sequenz — Die Folgenglieder der Morsefolge (auch Morse Thue Sequenz oder Thue Morse Sequenz genannt) bestehen aus Wörtern, welche aus 0 und 1 gebildet werden und wie folgt definiert sind: Das erste Folgenglied ist 0. Wenn w das n te Folgenglied ist, so ist …   Deutsch Wikipedia

  • Thue (programming language) — Thue (pronEng|ˈtuːeɪ TOO ay ) is an esoteric programming language invented by John Colagioia in early 2000. It is a meta language that can be used to define or recognize Type 0 languages from the Chomsky hierarchy. Because it is able to define… …   Wikipedia

  • Morse-Thue-Sequenz — Die Folgenglieder der Morsefolge (auch Morse Thue Sequenz oder Thue Morse Sequenz genannt) bestehen aus Wörtern, welche aus 0 und 1 gebildet werden und wie folgt definiert sind: Das erste Folgenglied ist 0. Wenn w das n te Folgenglied ist, so ist …   Deutsch Wikipedia

  • Axel Thue — Infobox Scientist name = Axel Thue image width = 250px caption = Axel Thue (1863 1922) birth date = birth date|1863|2|19|df=y birth place = Tönsberg, Norway residence = nationality = death date = death date and age|1922|3|7|1863|2|19|df=y death… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”