- Concentration dimension
-
In mathematics — specifically, in probability theory — the concentration dimension of a Banach space-valued random variable is a numerical measure of how “spread out” the random variable is compared to the norm on the space.
Definition
Let (B, || ||) be a Banach space and let X be a Gaussian random variable taking values in B. That is, for every linear functional ℓ in the dual space B∗, the real-valued random variable 〈ℓ, X〉 has a normal distribution. Define
Then the concentration dimension d(X) of X is defined by
Examples
- If B is n-dimensional Euclidean space Rn with its usual Euclidean norm, and X is a standard Gaussian random variable, then σ(X) = 1 and E[||X||2] = n, so d(X) = n.
- If B is Rn with the supremum norm, then σ(X) = 1 but E[||X||2] (and hence d(X)) is of the order of log(n).
References
- Ledoux, Michel; Talagrand, Michel (1991). Probability in Banach spaces. Berlin: Springer-Verlag. pp. xii+480. ISBN 3-540-52013-9. MR1102015 (See chapter 9)
Categories:
Wikimedia Foundation. 2010.