- Strange matter
Strange matter is a particular form of
quark matter , usually thought of as a 'liquid' of up, down, and strangequark s. It is to be contrasted withnuclear matter , which is a liquid ofneutron s andproton s (which themselves are built out of up and down quarks), and with non-strange quark matter, which is a quark liquid containing only up and down quarks. At high enough density, strange matter is expected to be color superconducting. Strange matter is hypothesized to occur in the core ofneutron star s, or, more speculatively, as isolated droplets that may vary in size fromfemtometer s (strangelet s) to kilometers (quark star s).Two meanings of the term "strange matter"
In
particle physics andastrophysics , the term is used in two ways, one broader and the other more specific.
# The broader meaning is just quark matter that contains three flavors of quarks: up, down, and strange. In this definition, there is a critical pressure and an associated critical density, and when nuclear matter (made ofprotons andneutrons ) is compressed beyond this density, the protons and neutrons dissociate into quarks, yielding quark matter (probably strange matter).
# The narrower meaning is quark matter that is more stable than nuclear matter. The idea that this could happen is the "strange matter hypothesis" of Bodmer [A. Bodmer "Collapsed Nuclei" [http://prola.aps.org/abstract/PRD/v4/i6/p1601_1 Phys. Rev. D4, 1601 (1971)] ] and Witten [E. Witten, "Cosmic Separation Of Phases" [http://prola.aps.org/abstract/PRD/v30/i2/p272_1 Phys. Rev. D30, 272 (1984)] ] . In this definition, the critical pressure is zero: the true ground state of matter is always quark matter. The nuclei that we see in the matter around us, which are droplets of nuclear matter, are actuallymetastable , and given enough time (or the right external stimulus) would decay into droplets of strange matter, i.e.strangelet s.trange matter that is only stable at high pressure
Under the broader definition, strange matter might occur inside
neutron star s, if the pressure at their core is high enough (i.e. above the critical pressure). At the sort of densities we expect in the center of a neutron star, the quark matter would probably be strange matter. It could conceivably be non-strange quark matter, if the effective mass of the strange quark were too high. Charm and heavier quarks would only occur at much higher densities.A neutron star with a quark matter core is often called a
hybrid star . However, it is hard to know whether hybrid stars really exist in nature because physicists currently have little idea of the likely value of the critical pressure or density. It seems plausible that the transition to quark matter will already have occurred when the separation between thenucleon s becomes much smaller than their size, so the critical density must be less than about 100 times nuclear saturation density. But a more precise estimate is not yet available, because thestrong interaction that governs the behavior of quarks is particularly intractable, and numerical calculations usinglattice QCD are currently blocked by thefermion sign problem .One major area of activity in neutron star physics is the attempt to find observable signatures by which we could tell, from earth based observations of neutron stars, whether they have quark matter (probably strange matter) in their core.
trange matter that is stable at zero pressure
If the "strange matter hypothesis" is true then nuclear matter is metastable against decaying into strange matter. The lifetime for spontaneous decay is very long, so we do not see this decay process happening around us. However, under this hypothesis there should be strange matter in the universe:
#Quark star s (often called "strange stars") consist of quark matter from their core to their surface. They would be several kilometers across, and may have a very thin crust of nuclear matter.
#Strangelet s are small pieces of strange matter, perhaps as small as nuclei. They would be produced when strange stars are formed or collide, or when a nucleus decays.ee also
*
Quark matter
*Quark star
*Strangelet Further reading
* J. Madsen, "Physics and astrophysics of strange quark matter" [http://www.arxiv.org/abs/astro-ph/9809032 Lect. Notes Phys. 516:162-203 (1999)]
References
Wikimedia Foundation. 2010.