- Weakly symmetric space
In
mathematics , a weakly symmetric space is a notion introduced by the Norwegian mathematicianAtle Selberg in the 1950s as a generalisation ofsymmetric space , due toÉlie Cartan . Geometrically the spaces are defined as completeRiemannian manifold s such that any two points can be exchanged by anisometry , the symmetric case being when the isometry is required to have period two. The classification of weakly symmetric spaces relies on that of periodic automorphisms of complexsemisimple Lie algebra s. They provide examples ofGelfand pair s, although the corresponding theory of spherical functions inharmonic analysis , known for symmetric spaces, has not yet been developed.References
*citation|first=D. N.|last=Akhiezer|first2=E. B.|last2=Vinberg|title=Weakly symmetric spaces and spherical varieties|journal=Transf. Groups|volume=4|year=1999|pages=3–24
*citation|first=Sigurdur|last=Helgason|title=Differential geometry, Lie groups and symmetric spaces|year=1978|publisher=Academic Press|id=ISBN 0-12-338460-5
*citation|first=V. G.|last=Kac|authorlink=Victor Kac|title=Infinite dimensional Lie algebras|edition=3rd|publisher=Cambridge University Press|year=1990| id = ISBN 0-521-46693-8
*citation|first=A.|last=Selberg|authorlink=Atle Selberg|title=Harmonic analysis and discontinuous groups in weakly symmetric riemannian spaces, with applications to Dirchlet series|journal=J. Indian Math. Society|volume=20|year=1956|pages=47–87
*citation| last=Wolf|first=J. A.|last2=Gray|first2= A.|title=Homogeneous spaces defined by Lie group automorphisms. I, II.|journal=J. Differential Geometry|volume= 2|year= 1968 |pages=77–114, 115–159
*citation|title=Harmonic Analysis on Commutative Spaces|first=J. A.|last= Wolf|publisher=American Mathematical Society|year= 2007
id=ISBN 0821842897
Wikimedia Foundation. 2010.