- Sperrylite
Infobox mineral
name = Sperrylite
boxwidth =
caption =
formula = PtAs2
color = tin white
habit = well-formed finely crystalline, massive to reniform
system = cubic
cleavage = cubic indistinct
fracture = conchoidal
mohs = 6 - 7
luster = metallic
refractive =
pleochroism =
streak = black
gravity = 10.6
melt =
solubility =Sperrylite is a
platinum arsenide mineral with formula: PtAs2 and is an opaque metallic tin white mineral which crystallizes in the isometric system with thepyrite group structure. It forms cubic, octahedral or pyritohedralcrystal s in addition to massive and reniform habits. It has a Mohs hardness of 6 - 7 and a very high specific gravity of 10.6.It was discovered by
Francis Louis Sperry , an American chemist, in1889 at Sudbury.The most important occurrence of Sperrylite is in the
nickel ore deposit ofSudbury Basin inOntario ,Canada . It also occurs in the layeredigneous complex of theBushveld region ofSouth Africa and the Oktyabr'skoye copper-nickel deposit of the Eastern-Siberian Region,Russia .Geologic occurrence
Sperrylite is the most common platinum mineral, it generally occurs with a wide array of other unusual minerals, including
cooperite [(Pt,Pd,Ni)S] ,laurite [RuS2] ,kotulskite [Pd(Te,Bi)] ,merenskyite [(Pd,Pt)(Te,Bi)2] , iridium-osmium (Ir-Os)alloy s,sudburyite [(Pd,Ni)Sb] ,omeiite [(Os,Ru)As2] ,testibiopalladite [PdTe(Sb,Te)] , andniggliite [PtSn] , to name a few. It does not readily decompose through normalweathering processes and, consequently, has been reported in widely scatteredalluvial deposits . Somewhat surprisingly, the first was as tiny crystals found withrhodolite garnet andcorundum during alluvialgem mining in streams draining Mason Mountain,Macon County, North Carolina (Hidden 1898). Sperrylite has been identified inFinland from sulfide deposits generally associated with layered mafic-ultramafic complexes.Structure
Sperrylite belongs to the pyrite group of minerals and therefore it shares similar structure and crystal habits with them. Analyses typically show minor amounts of rhodium. trace copper, iron, and antimony as well as intergrowths with Pt-Fe are reported from some occurrences. Sperrylite crystallizes in Pa3, with a =5.9681(l) A. (Szymański, 1979). It has very similar crystal structure as in platarsite [Pt(As,S)2] . Sperrylite crystals vary considerably in shape and size and are usually enclosed in a variety of host minerals. They are usually closely associated with basemetal sulfide. They are commonly at the edge and partially enclosed by pentlandite, pyrrhotite or chalcopyrite. Seabrook (2004). Sperrylite is composed of loose aggregate of bright silver cubes, some with octahedral modifications. The grains are mostly anhedral, but a few euhedral grains could also be encountered. Sperrylite is formed by
contact metamorphism , as in indicated by the development oftriple point annealing contacts withpyrrhotite grains. The grains of sperrylite are surrounded by later veins of pyrite. Sperrylite is cubic (2/m3) and is typically seen in well-developed cubes or cuboctahedra, some of which are so highly modified that crystal edges and comers appear rounded. (Nicol and Goldschmidt 1903) identified seventeen crystal forms exhibited by sperrylite, including four different trapezohedra, a trisoctahedron, five pyritohedra, and four diploids. Crystals to 2.5 cm have been reported.Physical properties
Sperrylite is a tin-white mineral known for its brilliant metallic luster, with a grey to black streak. It has indistinct cleavage on {001} and a conchoidal fracture and is brittle. Its hardness is between 6 and 7, and it is quite dense with a calculated specific gravity of 10.78. It has an isometric cystal system, Conchoidal fracture, non-magnetic and non-radioactive.
Biographic sketch
Francis Lewis Sperry was a Canadian mineralogist and expert chemist, discovered the mineral sperrylite, which was then named after him. He was a graduate of Sheffield scientific school, Yale University. He was also a member of the American society of mining Engineers. Sperrylite was first described by H. H. Wells (1889) from material collected at the Vermilion mine in what is now the famous Sudbury district, Ontario, Canada. He named it for Mr. Francis L. Sperry, chief chemist with the Canadian Copper Company of Sudbury, who sent him the original material containing the new mineral (Mitchell 1985). It occurred in weathered material with colorless transparent cassiterite [SnO2] , which is thought to have been derived from the oxidation of stannite [Cu2(Fe,Zn)SnS4] . Mr. Sperry sent a small quantity of the newly found mineral and also furnished an account of its occurrence in which he said the mineral was found at the Vermillon mine in the district of Algoma, province of Ontario, discovered in October, 1887ee also
*
List of minerals
*List of minerals named after people References
* [http://mineral.galleries.com/minerals/sulfides/sperryli/sperryli.htm Mineral galleries]
* [http://www.mindat.org/min-3723.html Mindat localities]
* [http://webmineral.com/data/Sperrylite.shtml Webmineral]
*Cook, Robert B. (2001) Connoisseur's choice; sperrylite, Talnakh, Noril'sk District, Siberia, Russia. Rocks and Minerals, 0035-7529, Vol. 76, Issue 1
*Szymański, J.T. (1979) the crystal structure of platarsite, Pt (As, S) 2, and a comparison with sperrylite, PtAs2. Canadian Mineralogist: 17: 117-123.
*Hidden, W. E. 1898. Occurrence of sperrylite in North Carolina. American Journal of Science 6:381
*Mitchell, R. S. 1985. Who's who in mineral names: Willard Lincoln Roberts and Francis Lewis Sperry. Rocks & Minerals 60:26-28.
*Wells, H. H. 1889. Sperrylite, a new mineral. American Journal of Science, vol 37, pp 67-70
*Seabrooke, C.L. 2004. Platinum-group minerals in the Raglan Ni-Cu-(PGE) sulfide deposit, Cape Smith, Quebec, Canada. Canadian mineralogist. Vol. 42, Part 2, pp.485-497
*Gait, R. I. 1982. Sperrylite from the type locality. Mineralogical Record 13:159-60
*Penfield, S. L. 1889. On the Crystalline form of Sperrylite. American Journal of Science. Vol. 37, pp.71-73
*Goldschmidt, V. 1903. New forms of Sperrylite. American Journal of Science, Vol. 15, pp.450-458
Wikimedia Foundation. 2010.