Hrushovski construction

Hrushovski construction

In model theory, a branch of mathematical logic, the Hrushovski construction generalizes the Fraisse limit by working with a notion of "strong substructure" leq rather than subseteq. It can be thought of as a kind of "model-theoretic forcing", where a (usually) stable structure is created, called the "generic". The specifics of leq determine various properties of the generic, with it's geometric properties being of particular interest. It was initially used by Ehud Hrushovski to generate a stable structure with an "exotic" geometry, thereby refuting Zil'ber's Conjecture.

Three conjectures

The initial applications of the Hrushovski construction refuted two conjectures and answered a third question in the negative. Specifically, we have:

* Lachlan's Conjecture Any stable aleph_0-categorical theory is totally transcendental.

* Zil'ber's Conjecture Any uncountably categorical theory is either locally modular or interprets an algebraically closed field.

* Cherlin's Question Is there a maximal (with respect to expansions) strongly minimal set?

The construction

Let "L" be a finite relational language. Fix C a class of "finite" "L"-structures which are closed under isomorphisms andsubstructures. We want to strengthen the notion of substructure; letleq be a relation on pairs from C satisfying:

* A leq B implies A subseteq B.
* A subseteq B subseteq C and A leq C implies A leq B
* varnothing leq A for all A in C.
* A leq B implies A cap C leq B cap C for all C in C.
* If f: A ightarrow A' is an isomorphism and A leq B, then f extends to an isomorphism B ightarrow B' for some superset of B with A' leq B'.

An embedding f: A hookrightarrow D is "strong" if f(A) leq D.

We also want the pair (C, leq) to satisfy the "amalgamation property": if A leq B_1, A leq B_2 then there is a D in Cso that each B_i embeds strongly into D with the same image forA.

For infinite D, and A in C, we say A leq D iff A leq X forA subseteq X subseteq D, X in C. For any A subseteq D, the"closure" of A (in D), operatorname{cl}_D(A) is the smallest superset of Asatisfying operatorname{cl}(A) leq D.

Definition A countable structure G is a (C, leq)-generic if:
* For A subseteq_omega G, A in C.
* For A leq G, if A leq B then B there is a strong embedding of B into G over A
* G has finite closures: for every A subseteq_omega G, operatorname{cl}_G(A) is finite.

Theorem If (C, leq) has the amalgamation property, then there is aunique (C, leq)-generic.

The existence proof proceeds in imitation of the existence proof forFraisse limits. The uniquenss proof comes from an easy back and forthargument.

References

*E. Hrushovski. A stable aleph_0-categorical pseudoplane. "Preprint, 1988"
*E. Hrushovski. A new strongly miminal set. "Annals of Pure and Applied Logic", 52:147–166, "1993".
* [http://math.univ-lyon1.fr/~wagner/nijmegen.pdf Slides on Hrushovski Construction from Frank Wagner]


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Strongly minimal theory — In model theory a branch of mathematical logic a minimal structure is an infinite one sorted structure such that every subset of its domain that is definable with parameters is either finite or cofinite. A strongly minimal theory is a complete… …   Wikipedia

  • List of mathematical logic topics — Clicking on related changes shows a list of most recent edits of articles to which this page links. This page links to itself in order that recent changes to this page will also be included in related changes. This is a list of mathematical logic …   Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • Schanuel's conjecture — In mathematics, specifically transcendence theory, Schanuel s conjecture is the following statement::Given any n complex numbers z 1,..., z n which are linearly independent over the rational numbers Q, the extension field Q( z 1,..., z n ,exp( z… …   Wikipedia

  • FOLKLORE — This entry is arranged according to the following outline: introduction …   Encyclopedia of Judaism

  • literature — /lit euhr euh cheuhr, choor , li treuh /, n. 1. writings in which expression and form, in connection with ideas of permanent and universal interest, are characteristic or essential features, as poetry, novels, history, biography, and essays. 2.… …   Universalium

  • Equation — Équation (mathématiques)  Cet article concerne les équations mathématiques dans leur généralité. Pour une introduction au concept, voir Équation (mathématiques élémentaires).   …   Wikipédia en Français

  • Équation (mathématiques) —  Cet article concerne les équations mathématiques dans leur généralité. Pour une introduction au concept, voir Équation (mathématiques élémentaires).   …   Wikipédia en Français

  • Équation symétrique — Équation (mathématiques)  Cet article concerne les équations mathématiques dans leur généralité. Pour une introduction au concept, voir Équation (mathématiques élémentaires).   …   Wikipédia en Français

  • Équation vectorielle — Équation (mathématiques)  Cet article concerne les équations mathématiques dans leur généralité. Pour une introduction au concept, voir Équation (mathématiques élémentaires).   …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”