Nash-Moser theorem

Nash-Moser theorem

The Nash-Moser theorem, attributed to mathematicians John Forbes Nash and Jurgen Moser is a generalization of the inverse function theorem on Banach spaces to a class of 'tame' Frechet spaces.In contrast to the Banach space case, in which the invertibility of the derivative at a point is sufficient for a map to be locally invertible, the Nash-Moser theorem requires the derivative to be invertible in a neighbourhood. The theorem is widely used to prove local uniqueness for non-linear partial differential equations in spaces of smooth functions.

While Nash is credited with originating the theorem as a step in his proof of the Nash embedding theorem, Moser showed that Nash's methods could be successfully applied to solve problems on periodic orbits in celestial mechanics.

Further reading

* cite journal
last = Hamilton
first = Richard S.
title = The inverse function theorem of Nash and Moser
journal = Bulletin of the American Mathematical Society
volume = 7
issue = 1
year = 1982
pages = 65–222
url = http://www.ams.org/bull/1982-07-01/S0273-0979-1982-15004-2/S0273-0979-1982-15004-2.pdf
format = PDF-12MB
doi = 10.1090/S0273-0979-1982-15004-2
. (A detailed exposition of the Nash-Moser theorem and its mathematical background.)


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Nash–Moser theorem — The Nash–Moser theorem, attributed to mathematicians John Forbes Nash and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to a class of tame Fréchet spaces. In contrast to the Banach space case, in which the… …   Wikipedia

  • Nash embedding theorem — The Nash embedding theorems (or imbedding theorems), named after John Forbes Nash, state that every Riemannian manifold can be isometrically embedded into some Euclidean space. Isometric means preserving the length of every path. For instance,… …   Wikipedia

  • Jürgen K. Moser — Pour les articles homonymes, voir Moser. Jürgen Moser à Tokyo, 1969 …   Wikipédia en Français

  • Jürgen Moser — Jürgen K. Moser or Juergen K. Moser (July 4 1928, Königsberg, East Prussia ndash; 17 December 1999, Zürich, Switzerland) was a German American mathematician who worked in differential equations, spectral theory, celestial mechanics, and stability …   Wikipedia

  • John Forbes Nash Jr. — John Forbes Nash John Forbes Nash Jr. (* 13. Juni 1928 in Bluefield, West Virginia) ist ein US amerikanischer Mathematiker, der besonders in den Bereichen Spieltheorie und Differentialgeometrie sowie auf dem Gebiet der …   Deutsch Wikipedia

  • Einbettungssatz von Nash — Der Einbettungssatz von Nash (nach John Forbes Nash Jr.) ist ein Ergebnis aus dem mathematischen Teilgebiet der riemannschen Geometrie. Er besagt, dass jede riemannsche Mannigfaltigkeit isometrisch in einen euklidischen Raum für ein geeignetes n… …   Deutsch Wikipedia

  • De Bruijn–Erdős theorem (graph theory) — This article is about coloring infinite graphs. For the number of lines determined by a finite set of points, see De Bruijn–Erdős theorem (incidence geometry). In graph theory, the De Bruijn–Erdős theorem, proved by Nicolaas Govert de Bruijn and… …   Wikipedia

  • Liste de théorèmes — par ordre alphabétique. Pour l établissement de l ordre alphabétique, il a été convenu ce qui suit : Si le nom du théorème comprend des noms de mathématiciens ou de physiciens, on se base sur le premier nom propre cité. Si le nom du théorème …   Wikipédia en Français

  • Séminaire Nicolas Bourbaki (1960–1969) — Continuation of the Séminaire Nicolas Bourbaki programme, for the 1960s.1960/61 series*205 Adrien Douady, Plongements de sphères, d après Mazur et Brown (embeddings of spheres) *206 Roger Godement, Groupes linéaires algébriques sur un corps… …   Wikipedia

  • List of mathematics articles (N) — NOTOC N N body problem N category N category number N connected space N dimensional sequential move puzzles N dimensional space N huge cardinal N jet N Mahlo cardinal N monoid N player game N set N skeleton N sphere N! conjecture Nabla symbol… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”