Nash–Moser theorem — The Nash–Moser theorem, attributed to mathematicians John Forbes Nash and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to a class of tame Fréchet spaces. In contrast to the Banach space case, in which the… … Wikipedia
Nash embedding theorem — The Nash embedding theorems (or imbedding theorems), named after John Forbes Nash, state that every Riemannian manifold can be isometrically embedded into some Euclidean space. Isometric means preserving the length of every path. For instance,… … Wikipedia
Jürgen K. Moser — Pour les articles homonymes, voir Moser. Jürgen Moser à Tokyo, 1969 … Wikipédia en Français
Jürgen Moser — Jürgen K. Moser or Juergen K. Moser (July 4 1928, Königsberg, East Prussia ndash; 17 December 1999, Zürich, Switzerland) was a German American mathematician who worked in differential equations, spectral theory, celestial mechanics, and stability … Wikipedia
John Forbes Nash Jr. — John Forbes Nash John Forbes Nash Jr. (* 13. Juni 1928 in Bluefield, West Virginia) ist ein US amerikanischer Mathematiker, der besonders in den Bereichen Spieltheorie und Differentialgeometrie sowie auf dem Gebiet der … Deutsch Wikipedia
Einbettungssatz von Nash — Der Einbettungssatz von Nash (nach John Forbes Nash Jr.) ist ein Ergebnis aus dem mathematischen Teilgebiet der riemannschen Geometrie. Er besagt, dass jede riemannsche Mannigfaltigkeit isometrisch in einen euklidischen Raum für ein geeignetes n… … Deutsch Wikipedia
De Bruijn–Erdős theorem (graph theory) — This article is about coloring infinite graphs. For the number of lines determined by a finite set of points, see De Bruijn–Erdős theorem (incidence geometry). In graph theory, the De Bruijn–Erdős theorem, proved by Nicolaas Govert de Bruijn and… … Wikipedia
Liste de théorèmes — par ordre alphabétique. Pour l établissement de l ordre alphabétique, il a été convenu ce qui suit : Si le nom du théorème comprend des noms de mathématiciens ou de physiciens, on se base sur le premier nom propre cité. Si le nom du théorème … Wikipédia en Français
Séminaire Nicolas Bourbaki (1960–1969) — Continuation of the Séminaire Nicolas Bourbaki programme, for the 1960s.1960/61 series*205 Adrien Douady, Plongements de sphères, d après Mazur et Brown (embeddings of spheres) *206 Roger Godement, Groupes linéaires algébriques sur un corps… … Wikipedia
List of mathematics articles (N) — NOTOC N N body problem N category N category number N connected space N dimensional sequential move puzzles N dimensional space N huge cardinal N jet N Mahlo cardinal N monoid N player game N set N skeleton N sphere N! conjecture Nabla symbol… … Wikipedia