Invariant de nœuds — Les deux nœuds sont les mêmes, leur invariant est donc identique. En théorie des nœuds, un invariant de nœuds est une quantité définie pour chaque nœud qui est la même pour tous les nœuds équivalents. On parlera d équivalence lorsqu on peut… … Wikipédia en Français
Finite type invariant — In the mathematical theory of knots, a finite type invariant is a knot invariant that can be extended (in a precise manner to be described) to an invariant of certain singular knots that vanishes on singular knots with m + 1 singularities and… … Wikipedia
Théorie des nœuds — Pour les articles homonymes, voir nœud. illustration de la théorie des nœuds La théorie des nœuds est une branche de la topologie qui consiste e … Wikipédia en Français
List of knot theory topics — Knot theory is the study of mathematical knots. While inspired by knots which appear in daily life in shoelaces and rope, a mathematician s knot differs in that the ends are joined together so that it cannot be undone. In precise mathematical… … Wikipedia
List of mathematics articles (K) — NOTOC K K approximation of k hitting set K ary tree K core K edge connected graph K equivalence K factor error K finite K function K homology K means algorithm K medoids K minimum spanning tree K Poincaré algebra K Poincaré group K set (geometry) … Wikipedia
Knot theory — A three dimensional depiction of a thickened trefoil knot, the simplest non trivial knot … Wikipedia
History of knot theory — For thousands of years, knots have been used for basic purposes such as recording information, fastening and tying objects together. Over time people realized that different knots were better at different tasks, such as climbing or sailing. Knots … Wikipedia
Floer homology — is a mathematical tool used in the study of symplectic geometry and low dimensional topology. First introduced by Andreas Floer in his proof of the Arnold conjecture in symplectic geometry, Floer homology is a novel homology theory arising as an… … Wikipedia
Michael Atiyah — Sir Michael Atiyah Born 22 April 1929 (1929 04 22) (age 82) … Wikipedia
Donaldson–Thomas theory — In mathematics, specifically algebraic geometry, Donaldson–Thomas theory is the theory of Donaldson–Thomas invariants. Given a compact moduli space of sheaves on a Calabi–Yau threefold, its Donaldson–Thomas invariant is the virtual number of its… … Wikipedia