Motor unit recruitment

Motor unit recruitment

Motor unit recruitment is the progressive activation of a muscle by successive recruitment of contractile units (motor units) to accomplish increasing gradations of contractile strength. A motor unit consists of one motor neuron and all of the muscle fibers it contracts. All muscles consist of a number of motor units and the fibers belonging to a motor unit are dispersed and intermingle amongst fibers of other units. The muscle fibers belonging to one motor unit can be spread throughout part, or most of the entire muscle, depending on the number of fibers and size of the muscle.[1][2] When a motor neuron is activated, all of the muscle fibers innervated by the motor neuron are stimulated and contract. The activation of one motor neuron will result in a weak but distributed muscle contraction. The activation of more motor neurons will result in more muscle fibers being activated, and therefore a stronger muscle contraction. Motor unit recruitment is a measure of how many motor neurons are activated in a particular muscle, and therefore is a measure of how many muscle fibers of that muscle are activated. The higher the recruitment the stronger the muscle contraction will be. Motor units are generally recruited in order of smallest to largest (fewest fibers to most fibers) as contraction increases. This is known as "Henneman's Size Principle".[3]

Contents

Neuronal mechanism of recruitment

Henneman proposed that the mechanism underlying the Size Principle was that the smaller motor neurons had a smaller surface area and therefore a higher membrane resistance. He predicted that the current generated by an excitatory postsynaptic potential (EPSPs) would result in a higher voltage change (depolarization) across the neuronal membrane of the smaller motor neurons and therefore larger EPSPs in smaller motoneurons.[4] Burke later demonstrated that there was a graded decrease of both EPSP inhibitory post synaptic potential (IPSP) amplitudes from small to large motoneurons.[5] This seemed to confirm Henneman's idea, but Burke disagreed, pointing out that larger neurons with a larger surface area had space for more synapses. Burke eventually showed (in a very small sample of neurons) that smaller motoneurons have a greater number of synaptic inputs from a single input source.[6] The topic is probably still regarded as controversial.

Under some circumstances, the normal order of motor unit recruitment may be altered, such that small motor units cease to fire and larger ones may be recruited.[7][8] This is thought to be due to the interaction of excitatory and inhibitory motoneuronal inputs.

Rate coding of muscle force

The force produced by a single motor unit is determined in part by the number of muscle fibers in the unit. Another important determinant of force is the frequency with which the muscle fibers are stimulated by their innervating axon. The rate at which the nerve impulses arrive is known as the motor unit firing rate and may vary from frequencies low enough to produce a series of single twitch contractions to frequencies high enough to produce a fused tetanic contraction. Generally, this allows a 2 to 4-fold change in force. In general, the motor unit firing rate of each individual motor unit increases with increasing muscular effort until a maximum rate is reached. This smooths out the incremental force changes which would otherwise occur as each additional unit was recruited.[9]

Proportional control of muscle force

The distribution of motor unit size is such that there is an inverse relationship between the number of motor units and the force they generate (i.e., the number of muscle fibers per motor unit). Thus, there are many small motor units and progressively fewer larger motor units. This means that at low levels of recruitment, the force increment due to recruitment is small, whereas in forceful contractions, the force increment becomes much larger. Thus the ratio between the force increment produced by adding an additional motor unit and the force threshold at which that unit is recruited remains relatively constant.[3]

Electrodiagnostic testing

In medical electrodiagnostic testing for a patient with weakness, careful analysis of the "motor unit action potential" (MUAP) size, shape, and recruitment pattern can help in distinguishing a myopathy from a neuropathy.

See also

References

  1. ^ Ounjian, M., R.R. Roy, E. Eldred, A Garfinkel, J.R. Payne, A. Armstrong, A. Toga, and V.R. Edgerton Physiological and Developmental Implications of Motor Unit Anatomy. J. Neurobiol. 22:547-559, 1991. Motor unit territory.
  2. ^ Bodine-Fowler, S., Garfinkel, A. , Roy, Roland R., and Edgerton, V. Reggie. Spatial distribution of muscle fibers within the territory of a motor unit. Muscle and Nerve 13:1133-1145, 1990. - non-random distribution of fibers.
  3. ^ a b Henneman, E., Somjen, G. & Carpenter, D. O. (1965). Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 28, 560-580.
  4. ^ Henneman, E., Somjen, G. & Carpenter, D. O. (1965). Excitability and inhibitability of motoneurons of different sizes. J. Neurophysiol. 28, 599-620.
  5. ^ Burke RE, Rymer WZ & Walsh JR. Relative strength of synaptic input from short-latency pathways to motor units of defined type in cat medial gastrocnemius. J Neurophysiol. 1976 May;39(3):447-58.
  6. ^ Burke RE, Walmsley B, Hodgson JA. HRP anatomy of group Ia afferent contacts on alpha motoneurones. Brain Res. 1979 Jan 12;160(2):347-52
  7. ^ Garnett, R. & Stephens, JA. The reflex responses of single motor units in human first dorsal interosseous muscle following cutaneous afferent stimulation. J. Physiol. Land. 303: 35 l-364, 1980.
  8. ^ Kanda, K., Burke, R. E., & Walmsley, B. Differential control of fast and slow twitch motor units in the decerebrate cat. Exp. Brain Res. 29:57-74, 1977.
  9. ^ Carlo J DeLuca. Control Properties of Motor Units. J. exp. Biol. 115, 125-136 (1985) \ 25.

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Motor unit number estimation — (MUNE) is a technique that uses electromyography to estimate the number of motor units in a muscle. Principles A motor unit consists of one alpha motoneuron and all the muscle fibres it innervates. Muscles differ in the number of motor units that …   Wikipedia

  • Motor unit plasticity — The motor unit consists of a voluntary alpha motoneuron and all of the collective muscle fibers that it controls, known as the effector muscle. The alpha motoneuron communicates with acetylcholine receptors on the motor end plate of the effector… …   Wikipedia

  • Motor unit — ”A motor unit is a single α motor neuron and all of the corresponding muscle fibers it innervates; all of these fibers will be of the same type (either fast twitch or slow twitch). When a motor unit is activated, all of its fibers contract.… …   Wikipedia

  • recruitment interval — the inverse of the recruitment frequency; in a recruitment pattern, the length of time between two consecutive discharges of a given motor unit when an additional motor unit is recruited …   Medical dictionary

  • recruitment frequency — in a recruitment pattern, the firing rate of one motor unit action potential at the time that a different potential first appears; cf. recruitment interval …   Medical dictionary

  • Transcontinental Motor Convoy — The Transcontinental Motor Convoys were two crossings, one in 1919 in which the US Army sent a convoy from Washington, DC to San Francisco on the Lincoln Highway, the first road across America, and one in 1920, in which an Army convoy traveled… …   Wikipedia

  • Skeletal muscle — is a type of striated muscle, which usually attaches to tendons. Skeletal muscles are used to create movement, by applying force to bones and joints; via contraction. They generally contract voluntarily (via somatic nerve stimulation), although… …   Wikipedia

  • Smooth muscle tissue — Smooth muscle …   Wikipedia

  • Electromyography — Not to be confused with Electronystagmography (ENG), Electrocardiography (ECG), or Electroencephalography (EEG). Electromyography Intervention ICD 9 CM 93.08 MeSH …   Wikipedia

  • Maryland Transportation Authority Police — Not to be confused with Maryland Transit Administration Police. Maryland Transportation Authority Police Abbreviation MdTAP Pa …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”