- Jónsson function
In
set theory , a mathematical discipline, an ω-Jónsson function, named forBjarni Jónsson , for a set of ordinals "x" is a function from to "x" such that for any subset "y" of "x" with the same cardinality as "x", "f" restricted to maps onto "x". Here if "x" is an ordered set and α is an ordinal, is the set of subsets of "x" of order type α. So in particular is the set of strictly increasing sequences of "x".harvs|txt|last=Erdős|last2=Hajnal|year=1966 showed that for any ordinal λ there is an ω-Jónsson function for λ.
ee also
*
Jónsson algebra References
*Citation | last1=Erdős | first1=P. | author1-link=Paul Erdos | last2=Hajnal | first2=András | title=On a problem of B. Jónsson | id=MathSciNet | id = 0209161 | year=1966 | journal=Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques | issn=0001-4117 | volume=14 | pages=19–23
*Citation | last1=Kanamori | first1=Akihiro | title=The Higher Infinite : Large Cardinals in Set Theory from Their Beginnings | publisher=Springer-Verlag | location=Berlin, New York | edition=2nd | isbn=978-3-540-00384-7 | year=2003|page=319
Wikimedia Foundation. 2010.