Centralizer and normalizer

Centralizer and normalizer

In group theory, the centralizer and normalizer of a subset S of a group G are subgroups of G which have a restricted action on the elements of S and S as a whole, respectively. These subgroups can provide insight into the structure of G.

Contents

Definitions

The centralizer of an element a of a group G (written as CG(a)) is the set of elements of G which commute with a;[1] in other words, CG(a) = {xG : xa = ax}. If H is a subgroup of G, then CH(a) = CG(a) ∩ H. If there is no danger of ambiguity, we can write CG(a) as C(a). Another, less common, notation is sometimes used when there is no danger of ambiguity, namely, Z(a), which parallels the notation for the center of a group. With this latter notation, one must be careful to avoid confusion between the center of a group G, Z(G), and the centralizer of an element g in G, given by Z(g).

More generally, let S be any subset of G (not necessarily a subgroup). Then the centralizer of S in G is defined as C(S) = {xG : ∀ sS, xs = sx}. If S = {a}, then C(S) = C(a).

C(S) is a subgroup of G; since if x, y are in C(S), then (xy)s=x(ys) = (xs)y = s(xy) for all s in S.

The center of a group G is CG(G), usually written as Z(G). The center of a group is both normal and abelian and has many other important properties as well. We can think of the centralizer of a as the largest (in the sense of inclusion) subgroup H of G having a in its center, Z(H).

A related concept is that of the normalizer of S in G, written as NG(S) or just N(S). The normalizer is defined as N(S) = {xG : x-1Sx = S}. Again, N(S) can easily be seen to be a subgroup of G. The normalizer gets its name from the fact that if S is a subgroup of G, then N(S) is the largest subgroup of G having S as a normal subgroup. The normalizer should not be confused with the normal closure.

A subgroup H of a group G is called a self-normalizing subgroup of G if NG(H) = H.

Properties

If G is an abelian group, then the centralizer or normalizer of any subset of G is all of G; in particular, a group is abelian if and only if Z(G) = G.

If a and b are any elements of G, then a is in C(b) if and only if b is in C(a), which happens if and only if a and b commute. If S = {a} then N(S) = C(S) = C(a).

C(S) is always a normal subgroup of N(S): If c is in C(S) and n is in N(S), we have to show that n −1cn is in C(S). To that end, pick s in S and let t = nsn −1. Then t is in S, so therefore ct = tc. Then note that ns = tn; and n −1t = sn −1. So

(n −1cn)s = (n −1c)tn = n −1(tc)n = (sn −1)cn = s(n −1cn)

which is what we needed.

If H is a subgroup of G, then the N/C theorem states that the factor group N(H)/C(H) is isomorphic to a subgroup of Aut(H), the automorphism group of H.

Since NG(G) = G and CG(G) = Z(G), the N/C Theorem also implies that G/Z(G) is isomorphic to Inn(G), the subgroup of Aut(G) consisting of all inner automorphisms of G.

If we define a group homomorphism T : G → Inn(G) by T(x)(g) = Tx(g) = xgx −1, then we can describe N(S) and C(S) in terms of the group action of Inn(G) on G: the stabilizer of S in Inn(G) is T(N(S)), and the subgroup of Inn(G) fixing S is T(C(S)).

See also

Notes

  1. ^ Jacobson (2009), p. 41

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • List of abstract algebra topics — Abstract algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras. The phrase abstract algebra was coined at the turn of the 20th century to distinguish this …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Center (group theory) — In abstract algebra, the center of a group G is the set Z ( G ) of all elements in G which commute with all the elements of G . That is,:Z(G) = {z in G | gz = zg ;forall,g in G}.Note that Z ( G ) is a subgroup of G , because # Z ( G ) contains e …   Wikipedia

  • List of group theory topics — Contents 1 Structures and operations 2 Basic properties of groups 2.1 Group homomorphisms 3 Basic types of groups …   Wikipedia

  • Janko group J1 — In mathematics, the smallest Janko group, J1, of order 175560, was first described by Zvonimir Janko (1965), in a paper which described the first new sporadic simple group to be discovered in over a century and which launched the modern theory of …   Wikipedia

  • Deligne–Lusztig theory — In mathematics, Deligne–Lusztig theory is a way of constructing linear representations of finite groups of Lie type using ℓ adic cohomology with compact support, introduced by Deligne Lusztig (1976). Lusztig (1984) used these representations to… …   Wikipedia

  • Feit–Thompson theorem — In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson (1962, 1963) Contents 1 History 2 Significance of the proof …   Wikipedia

  • Maximal torus — In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups. A torus in a Lie group G is a compact, connected, abelian Lie subgroup of G (and therefore isomorphic to… …   Wikipedia

  • Conjugacy class — In mathematics, especially group theory, the elements of any group may be partitioned into conjugacy classes; members of the same conjugacy class share many properties, and study of conjugacy classes of non abelian groups reveals many important… …   Wikipedia

  • Mathieu group — Group theory Group theory …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”