Invertible knot

Invertible knot

In mathematics, especially in the area of topology known as knot theory, an invertible knot is a knot that can be continuously deformed to itself, but with its orientation reversed. A non-invertible knot is any knot which does not have this property. The invertibility of a knot is a knot invariant. An invertible link is the link equivalent of an invertible knot.

Contents

Background

Number of invertible and non-invertible knots for each crossing number
Number of crossings 3 4 5 6 7 8 9 10 11 12 13 14 15 16 OEIS sequence
Non-invertible knots 0 0 0 0 0 1 2 33 187 1144 6919 38118 226581 1309875 A052402
Invertible knots 1 1 2 3 7 20 47 132 365 1032 3069 8854 26712 78830 A052403

It has long been known that most of the simple knots, such as the trefoil knot and the figure-eight knot are invertible. In 1962 Ralph Fox conjectured that some knots were non-invertible, but it was not proved that non-invertible knots exist until H. F. Trotter discovered an infinite family of pretzel knots that were non-invertible in 1963.[1] It is now known the majority of knots are non-invertible.[2]

Invertible knots

The simplest invertible knot, the trefoil knot. (Excepting the unknot)

All knots with crossing number of 7 or less are known to be invertible. No general method is known that can distinguish if a given knot is invertible.[1] The problem can be translated into algebraic terms, but unfortunately there is no known algorithm to solve this algebraic problem.

Strongly invertible knots

A more abstract way to define an invertible knot is to say there is an orientation-preserving homeomorphism of the 3-sphere which takes the knot to itself but reverses the orientation along the knot. By imposing the stronger condition that the homeomorphism also be an involution, i.e. have period 2 in the homeomorphism group of the 3-sphere, we arrive at the definition of a strongly invertible knot. All knots with tunnel number one, such as the trefoil knot and figure-eight knot, are strongly invertible.

Non-invertible knots

The non-invertible knot 817, the simplest of the non-invertible knots.

The simplest example of a non-invertible knot is the knot 817 (Alexander-Briggs notation) or .2.2 (Conway notation). The pretzel knot 7, 5, 3 is non-invertible, as are all pretzel knots of the form (2p + 1), (2q + 1), (2r + 1), where p, q, and r are distinct integers, which is the infinite family proven to be non-invertible by Trotter.[2]

See also

References

  1. ^ a b MathWorld
  2. ^ a b Basic graph theory

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • List of knot theory topics — Knot theory is the study of mathematical knots. While inspired by knots which appear in daily life in shoelaces and rope, a mathematician s knot differs in that the ends are joined together so that it cannot be undone. In precise mathematical… …   Wikipedia

  • Chiral knot — In the mathematical field of knot theory, a chiral knot is a knot that is not equivalent to its mirror image. An oriented knot that is equivalent to its mirror image is an amphichiral knot, also called an achiral knot or amphicheiral knot. The… …   Wikipedia

  • Cinquefoil knot — A cinquefoil knot. In knot theory, the cinquefoil knot, also known as Solomon s seal knot or the pentafoil knot, is one of two knots with crossing number five, the other being the three twist knot. It is listed as the 51 knot in the Alexander… …   Wikipedia

  • 6₂ knot — The 62 knot. In knot theory, the 62 knot is one of three prime knots with crossing number six, the others being the stevedore knot and the 63 knot. This knot is sometimes referred to as the Miller Institute knot[1], because is appea …   Wikipedia

  • Pretzel link — In knot theory, a branch of mathematics, a pretzel link is a special kind of link. A pretzel link which is also a knot (i.e. a link with one component) is a pretzel knot.In the standard projection of the (p 1,p 2,dots,p n) pretzel link, there are …   Wikipedia

  • List of mathematics articles (I) — NOTOC Ia IA automorphism ICER Icosagon Icosahedral 120 cell Icosahedral prism Icosahedral symmetry Icosahedron Icosian Calculus Icosian game Icosidodecadodecahedron Icosidodecahedron Icositetrachoric honeycomb Icositruncated dodecadodecahedron… …   Wikipedia

  • Biquandle — Biracks= In mathematics, biquandles and biracks are generalizations of quandles and racks. Whereas the hinterland of quandles and racks is the theory of classical knots, that of the bi versions, is the theory of virtual knots.Biquandles and… …   Wikipedia

  • Torus — Not to be confused with Taurus (disambiguation). This article is about the surface and mathematical concept of a torus. For other uses, see Torus (disambiguation). A torus As the distance to th …   Wikipedia

  • Mapping class group — In mathematics, in the sub field of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a discrete group of symmetries of the space. Contents 1 Motivation 2… …   Wikipedia

  • List of matrices — This page lists some important classes of matrices used in mathematics, science and engineering: Matrices in mathematics*(0,1) matrix a matrix with all elements either 0 or 1. Also called a binary matrix . *Adjugate matrix * Alternant matrix a… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”