Vector spherical harmonics

Vector spherical harmonics

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for the use with vector fields.

Definition

Several conventions have been used to define the VSH [R.G. Barrera, G.A. Estévez and J. Giraldo, "Vector spherical harmonics and their application to magnetostatic", Eur. J. Phys. 6 287-294 (1985)] [B. Carrascal, G.A. Estevez, P. Lee and V. Lorenzo " Vector spherical harmonics and their application to classical electrodynamics", Eur. J. Phys., 12, 184-191 (1991)] [E. L. Hill, "The theory of Vector Spherical Harmonics", Am. J. Phys. 22, 211-214 (1954)] [E. J. Weinberg, "Monopole vector spherical harmonics", Phys. Rev. D. 49, 1086-1092 (1994)] . We follow that of Barrera "et al". Given a scalar spherical harmonic Y_{lm}( heta,varphi) we define three VSH:

* mathbf{Y}_{lm} = Y_{lm}hat{mathbf{r

* mathbf{Psi}_{lm} = r abla Y_{lm}

* mathbf{Phi}_{lm} = mathbf{r} imes abla Y_{lm}

being hat{mathbf{r the unitary vector along the radial direction. The radial factors are included to guarantee that the dimensions of the VSH are the same as the ordinary spherical harmonics and that the VSH do not depend on the radial spherical coordinate.

The interest of these new vector fields is to separate the radial dependence from the angular one when using spherical ordinates, so that a vector field admits a multipole expansion

: mathbf{E}=sum_{l=0}^inftysum_{m=-l}^lleft(E^r_{lm}(r)mathbf{Y}_{lm}+E^{(1)}_{lm}(r)mathbf{Psi}_{lm}+E^{(2)}_{lm}(r)mathbf{Phi}_{lm} ight)

The labels on the components reflect that E^r_{lm} is the radial component of the vector field, while E^{(1)}_{lm} and E^{(2)}_{lm} are transverse components.

Main Properties

ymmetry

Like the scalar spherical harmonics, the VSH verify

:mathbf{Y}_{l,-m} = (-1)^m mathbf{Y}^*_{lm}qquadmathbf{Psi}_{l,-m} = (-1)^m mathbf{Psi}^*_{lm}qquadmathbf{Phi}_{l,-m} = (-1)^m mathbf{Phi}^*_{lm}

Orthogonality

The VSH are orthogonal in the usual three-dimensional way

:mathbf{Y}_{lm}cdotmathbf{Psi}_{lm}=0qquadmathbf{Y}_{lm}cdotmathbf{Phi}_{lm}=0qquadmathbf{Psi}_{lm}cdotmathbf{Phi}_{lm}=0

but also in the Hilbert space

:intmathbf{Y}_{lm}cdot mathbf{Y}^*_{l'm'},mathrm{d}Omega = delta_{ll'}delta_{mm'}

:intmathbf{Psi}_{lm}cdot mathbf{Psi}^*_{l'm'},mathrm{d}Omega = l(l+1)delta_{ll'}delta_{mm'}

:intmathbf{Phi}_{lm}cdot mathbf{Phi}^*_{l'm'},mathrm{d}Omega = l(l+1)delta_{ll'}delta_{mm'}

:intmathbf{Y}_{lm}cdot mathbf{Psi}^*_{l'm'},mathrm{d}Omega = 0

:intmathbf{Y}_{lm}cdot mathbf{Phi}^*_{l'm'},mathrm{d}Omega = 0

:intmathbf{Psi}_{lm}cdot mathbf{Phi}^*_{l'm'},mathrm{d}Omega = 0

Vector multipole moments

The orthogonality relations allow to compute the spherical multipole moments of a vector field as

:E^r_{lm} = int mathbf{E}cdot mathbf{Y}^*_{lm},mathrm{d}Omega

:E^{(1)}_{lm} = frac{1}{l(l+1)}int mathbf{E}cdot mathbf{Psi}^*_{lm},mathrm{d}Omega

:E^{(2)}_{lm} = frac{1}{l(l+1)}int mathbf{E}cdot mathbf{Phi}^*_{lm},mathrm{d}Omega

The gradient of a scalar field

Given the multipole expansion of a scalar field

: phi = sum_{l=0}^infty sum_{m=-l}^l phi_{lm}(r) Y_{lm}( heta,phi)

we can express its gradient in terms of the VSH as

: ablaphi = sum_{l=0}^infty sum_{m=-l}^lleft(frac{mathrm{d}phi_{lm{mathrm{d}r} mathbf{Y}_{lm}+frac{phi_{lm{r}mathbf{Psi}_{lm} ight)

Divergence

For any multipole field we have

: ablacdotleft(f(r)mathbf{Y}_{lm} ight) = left(frac{mathrm{d}f}{mathrm{d}r}+frac{2}{r}f ight)Y_{lm}

: ablacdotleft(f(r)mathbf{Psi}_{lm} ight) = -frac{l(l+1)}{r}fY_{lm}

: ablacdotleft(f(r)mathbf{Phi}_{lm} ight) = 0

By superposition we obtain the divergence of any vector field

: ablacdotmathbf{E} = sum_{l=0}^infty sum_{m=-l}^l left(frac{mathrm{d}E^r_{lm{mathrm{d}r}+frac{2}{r}E^r_{lm}-frac{l(l+1)}{r}E^{(1)}_{lm} ight)Y_{lm}

we see that the component on mathbf{Phi}_{lm} is always solenoidal.

Curl

For any multipole field we have

: abla imesleft(f(r)mathbf{Y}_{lm} ight) =-frac{1}{r}fmathbf{Phi}_{lm}

: abla imesleft(f(r)mathbf{Psi}_{lm} ight) = left(frac{mathrm{d}f}{mathrm{d}r}+frac{1}{r}f ight)mathbf{Phi}_{lm}

: abla imesleft(f(r)mathbf{Phi}_{lm} ight) = -frac{l(l+1)}{r}fmathbf{Y}_{lm}-left(frac{mathrm{d}f}{mathrm{d}r}+frac{1}{r}f ight)mathbf{Psi}_{lm}

By superposition we obtain the curl of any vector field

: abla imesmathbf{E} = sum_{l=0}^infty sum_{m=-l}^lleft(-frac{l(l+1)}{r}E^{(2)}_{lm}mathbf{Y}_{lm}-left(frac{mathrm{d}E^{(2)}_{lm{mathrm{d}r}+frac{1}{r}E^{(2)}_{lm} ight)mathbf{Psi}_{lm}+left(-frac{1}{r}E^r_{lm}+frac{mathrm{d}E^{(1)}_{lm{mathrm{d}r}+frac{1}{r}E^{(1)}_{lm} ight)mathbf{Phi}_{lm} ight)

Examples

Firsts vector spherical harmonics

* l=0,

:* mathbf{Y}_{00}= sqrt{frac{1}{4pihat{mathbf{r

:* mathbf{Psi}_{00}= mathbf{0}

:* mathbf{Phi}_{00}= mathbf{0}

* l=1,

:*mathbf{Y}_{10}= sqrt{frac{3}{4picos heta,hat{mathbf{r:*mathbf{Y}_{11}= -sqrt{frac{3}{8pimathrm{e}^{mathrm{i}varphi}sin heta,hat{mathbf{r

:*mathbf{Psi}_{10}= -sqrt{frac{3}{4pisin heta,hat{mathbf{ heta:*mathbf{Psi}_{11}= -sqrt{frac{3}{8pimathrm{e}^{mathrm{i}varphi}left(cos heta,hat{mathbf{ heta+mathrm{i}hat{mathbf{varphi ight)

:*mathbf{Phi}_{10}= -sqrt{frac{3}{4pisin heta,hat{mathbf{varphi:*mathbf{Phi}_{11}= sqrt{frac{3}{8pimathrm{e}^{mathrm{i}varphi}left(mathrm{i},hat{mathbf{ heta-cos heta,hat{mathbf{varphi ight)

The expression for negative values of m are obtained applying the symmetry relations.

Application to electrodynamics

The VSH are especially useful in the study of multipole radiation fields. For instance, a magnetic multipole is due to an oscillating current with angular frequency omega, and complex amplitude

:hat{mathbf{J= J(r)mathbf{Phi}_{lm}

and the corresponding electric and magnetic fields can be written as

:hat{mathbf{E= E(r)mathbf{Phi}_{lm}

:hat{mathbf{B= B^r(r)mathbf{Y}_{lm}+B^{(1)}(r)mathbf{Psi}_{lm}

Substituting into Maxwell equations, Gauss' law is automathically satisfied

: ablacdothat{mathbf{E=0

while Faraday's law decouples in

: abla imeshat{mathbf{E=-mathrm{i}omegahat{mathbf{BqquadRightarrowqquadleft{egin{array}{l}displaystyle frac{l(l+1)}{r}E = mathrm{i}omega B^r \ \ displaystylefrac{mathrm{d}E}{mathrm{d}r} +frac{E}{r}= mathrm{i}omega B^{(1)}end{array} ight.

Gauss' law for the magnetic field implies

: ablacdothat{mathbf{B = 0quadRightarrow quadfrac{mathrm{d}B^r}{r}+frac{2}{r}B^r - frac{l(l+1)}{r}B^{(1)}=0

and Ampère-Maxwell's equation gives

: abla imeshat{mathbf{B = mu_0 hat{mathbf{J + mathrm{i}mu_0varepsilon_0omega hat{mathbf{E quadRightarrowquad -frac{B^r}{r}+frac{mathrm{d}B^{(1){mathrm{d}r}+frac{B^{(1){r} = mu_0J+mathrm{i}omegamu_0varepsilon_0E

In this way, the partial differential equations have been transformed in a set of ordinary differential equations.

Application to fluid dynamics

In the calculation of the Stokes' law for the drag than a viscous fluid exerts on a small spherical particle, the velocity distribution obeys Navier-Stokes equations neglecting inertia, i.e.

: ablacdot mathbf{v} = 0

:mathbf{0} = - abla p + eta abla^2mathbf{v}

with the boundary conditions

:mathbf{v} = mathbf{0}quad (r=a)

:mathbf{v} = -mathbf{U}_0quad (r oinfty)

being mathbf{U}, the relative velocity of the particle to the fluid far from the particle. In spherical coordinates this velocity at infinity can be written as

:mathbf{U}_0 = U_0left(cos heta, hat{mathbf{r - sin heta ,hat{mathbf{ heta ight) = U_0 left(mathbf{Y}_{10} + mathbf{Psi}_{10} ight)

The last expression suggest a expansion on spherical harmonics for the liquid velocity and the pressure

:p=p(r)Y_{10},

:mathbf{v} = v^r(r) mathbf{Y}_{10} + v^{(1)}(r) mathbf{Psi}_{10}

Substitution in the Navier-Stokes equations produces a set of ordinary differential equations for the coefficients.

ee also

* Spherical harmonics
* Multipole expansion
* Electromagnetic radiation
* Spherical coordinates

External links

[http://mathworld.wolfram.com/VectorSphericalHarmonic.html "Vector Spherical Harmonics" at Eric Weisstein's Mathworld]

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Spherical harmonics — In mathematics, the spherical harmonics are the angular portion of an orthogonal set of solutions to Laplace s equation represented in a system of spherical coordinates. Spherical harmonics are important in many theoretical and practical… …   Wikipedia

  • Spherical multipole moments — are the coefficients in a series expansionof a potential that varies inversely with the distance R to a source, i.e., as frac{1}{R}. Examples of such potentials are the electric potential, the magnetic potential and the gravitational… …   Wikipedia

  • Spherical coordinate system — In mathematics, the spherical coordinate system is a coordinate system for representing geometric figures in three dimensions using three coordinates: the radial distance of a point from a fixed origin, the zenith angle from the positive z axis… …   Wikipedia

  • Solid harmonics — In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates. There are two kinds: the regular solid harmonics R^m ell(mathbf{r}), which vanish at the origin and the irregular solid… …   Wikipedia

  • Multipole radiation — is a theoretical framework for the description of electromagnetic or gravitational radiation from time dependent distributions of distant sources. These tools are applied to physical phenomena which occur at a variety of length scales from… …   Wikipedia

  • List of mathematics articles (V) — NOTOC Vac Vacuous truth Vague topology Valence of average numbers Valentin Vornicu Validity (statistics) Valuation (algebra) Valuation (logic) Valuation (mathematics) Valuation (measure theory) Valuation of options Valuation ring Valuative… …   Wikipedia

  • Multipole expansion — A multipole expansion is a mathematical series representing a function that depends on angles usually the two angles on a sphere. These series are useful because they can often be truncated, meaning that only the first few terms need to be… …   Wikipedia

  • gravitation — gravitational, adj. gravitationally, adv. /grav i tay sheuhn/, n. 1. Physics. a. the force of attraction between any two masses. Cf. law of gravitation. b. an act or process caused by this force. 2. a sinking or falling …   Universalium

  • Earth's magnetic field — Computer simulation of the Earth s field in a normal period between reversals.[1] The tubes represent magnetic field lines, blue when the field points towards the center and yellow when away. The rotation axis of the Earth is centered and… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”