Borel–Weil theorem

Borel–Weil theorem

In mathematics in the field of representation theory of compact Lie groups, the Borel–Weil theorem provides a concrete model for the irreducible representations as holomorphic sections of certain complex line bundles. It can be considered as a special case of the Borel–Bott–Weil theorem.

Given a compact connected Lie group "G" and an irreducible representation "V" of "G", according to the highest weight theorem, there is a dominant analytical integral weight, "λ", which completely determines "V". Hence it makes sense to write "V" = "V"("λ").

The Borel-Weil theorem states that if "λ" is a dominant integral weight, then there is an equivalence

:Gamma_{ ext{hol(G!/!T,L_{wlambda})simeq V(lambda)

as "G"-representations. Thus the irreducible representation determined by the dominant weight "λ" is the space of holomorphic sections on "G/T".Here "T" is a maximal torus in "G", "w" is the uniquely determined Weyl group element mapping a positive Weyl chamber to its negative andL_{wlambda} is the line bundle determined by the 1-dimensional representationxi_{wlambda}colon T omathbb{C} of "T" given by xi_{wlambda}(e^H),=e^{(wlambda)(H)} for Hinmathfrak{t}, the Cartan subalgebra according to "T".

Complex structure

Using the Peter–Weyl theorem, any compact Lie group can be viewed as a subgroup of the unitary group "U(n)" for a suitable natural number "n". Consequently "G" is a real linear Lie group. Now, let "T" be a maximal torus in "G". Let mathfrak g_mathbb{C} be the complexification of the Lie algebra mathfrak g of "G" and let G_mathbb{C} be the uniquely determined connected complex Lie subgroup of the general linear group GL(n,mathbb{C}) with Lie algebra mathfrak g_mathbb{C}. Given a Borel subgroup "B" in G_mathbb{C} it can be shown that the map gTmapsto gB is a diffeomorphism of manifolds

:G/Tstackrel{simeq}{longrightarrow} G_mathbb{C}/B,

and G_mathbb{C}/B has a natural structure as a complex manifold inherited from the complex Lie group G_mathbb{C}.

Holomorphic sections

The smooth sections in Gamma(G/T,,L_lambda) can be thought of as smooth functions fcolon G omathbb{C} such that f(gt)=xi_lambda(b^{-1}),f(g) for all gin G and tin T. The action of "G" on these sections is given by g,f(g')=f(g^{-1}g') for g,g'in G.

Now, let mathfrak n denote the nilpotent part of the Lie algebra of "B". Then Blongrightarrow{he^He^Xmid hin T, Hin imathfrak t, Xinmathfrak n} is a diffeomorphism. Hence xi_lambda can be extended to a 1-dimensional representation xi_lambda^mathbb{C} of "B" by

:xi_lambda^mathbb{C}(he^He^X)=xi_lambda(h)e^{lambda(H)},

with hin T, Xin imathfrak t and Hinmathfrak n.

Since G/Tsimeq G_mathbb{C}/B we can now interpret the smooth sections as smooth functions fcolon G_mathbb{C} omathbb{C} such that

:(*)qquadqquad f(gb)=xi_lambda^mathbb{C}(b^{-1})f(g)

for all gin G and bin B. Hence the holomorphic sections correspond to holomorphic maps fcolon G_mathbb{C} omathbb{C} with the property (*).

Example

Consider "G" = "SU"(2), the special unitary group. The Lie algebra of "SU"(2) is mathfrak{su}(2) consisting of all 2 by 2 complex matrices with zero trace satisfying X^t=-X. Then G_mathbb C=SL(2,mathbb C) and mathfrak{su}(2)_mathbb C=mathfrak{sl}(2,mathbb C). A maximal torus "T" is given by diagonal matrices, that is T={ ext{diag}(h,-h)mid hin imathbb R}. One can show, that the set of dominant analytical integral weights is given by

:A_{ ext{dom(T)={ frac n2epsilonmid ninmathbb N_0},

where epsilon( ext{diag}(h,-h))=h.The Borel-Weil theorem provides an "SU"(2)-equivariant isomorphism V(frac n2epsilon)simeqGamma_ ext{hol}(SU(2)/T,L_{- frac n2epsilon}). We now investigate the latter space.

Choose the Borel group, "B", to be the group of upper triangular matricesegin{pmatrix}a & p\0 & a^{-1}end{pmatrix}where a,pinmathbb C with "a" nonzero.

Assume fcolon SL(2,mathbb C) omathbb C satisfies f(gb)=xi_{ frac n2epsilon}^mathbb C(b)f(g) for all gin SU(2) and bin B.

If b=egin{pmatrix}a & p\0 & a^{-1}end{pmatrix}in B, then xi_{ frac n2epsilon}^mathbb C(b)=a^n, and hence, f(gb)=a^nf(g). For g=egin{pmatrix}z_1 & z_2\z_3 & z_4end{pmatrix}in SU(2) and "a" = 1, we get

:fegin{pmatrix}z_1 & pz_1 + z_2\z_3 & pz_3 + z_4end{pmatrix}=fegin{pmatrix}z_1 & z_2\z_3 & z_4end{pmatrix}.

Hence, ƒ only depends of z_1 and z_3. Now, for "p" = 0

:fegin{pmatrix}az_1 & a^{-1}z_2\az_3 & a^{-1}z_4end{pmatrix}=a^n fegin{pmatrix}z_1 & z_2\z_3 & z_4end{pmatrix}.

That is, ƒ is homogenous of degree "n". Since ƒ is holomorphic it's a polynomial, and if follows that V( frac n2epsilon) is the space of homogenous polynomials pcolonmathbb C^2 omathbb C of degree "n".

History

The theorem dates back to the early 1950s and can be found in harvtxt|Serre|1995 and harvtxt|Tits|1955.

References

*citation
last = Serre | first = Jean-Pierre | authorlink = Jean-Pierre Serre
title = Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts (d'après Armand Borel et André Weil)
journal = Séminaire Bourbaki
volume = 2 | issue = 100 | page = 447–454 | publisher = Soc. Math. France | location = Paris | year = 1995
. In French; translated title: “Linear representations and Kähler homogeneous spaces of compact Lie groups (after Armand Borel and André Weil.”

*citation
last = Tits | first = Jacques | authorlink = Jacques Tits
title = Sur certaines classes d'espaces homogènes de groupes de Lie
series = Acad. Roy. Belg. Cl. Sci. Mém. Coll.
volume = 29 | year = 1955
In French.

*citation
last = Sepanski | first = Mark R.
title = Compact Lie groups.
series = Graduate Texts in Mathematics | volume = 235
publisher = Springer | location = New York | year = 2007
.

*citation
last = Knapp | first = Anthony W.
title = Representation theory of semisimple groups: An overview based on examples
series = Princeton Landmarks in Mathematics
publisher = Princeton University Press | location = Princeton, NJ | year = 2001
. Reprint of the 1986 original.


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Borel–Bott–Weil theorem — In mathematics, the Borel–Bott–Weil theorem is a basic result in the representation theory of Lie groups, showing how a family of representations can be obtained from holomorphic sections of certain complex vector bundles, and, more generally,… …   Wikipedia

  • André Weil — Infobox Scientist name = André Weil image width = caption = birth date = birth date|1906|5|6 birth place = Nantes death date = death date and age|1998|8|6|1906|5|6 death place = field = Mathematics work institutions = Lehigh University… …   Wikipedia

  • Theorem der endlos tippenden Affen — Durch zufälliges Tippen von unendlicher Dauer auf einer Schreibmaschine werden mit Sicherheit alle Texte Shakespeares oder diverser Nationalbibliotheken entstehen. Das Infinite Monkey Theorem (v. engl. infinite „unendlich“; monkey „Affe“; theorem …   Deutsch Wikipedia

  • André Weil — (* 6. Mai 1906 in Paris; † 6. August 1998 in Princeton) war ein französischer Mathematiker. Inhaltsverzeichnis 1 Leben 2 Werk 3 Werke …   Deutsch Wikipedia

  • Armand Borel — (21 May 1923 ndash;11 August 2003) was a Swiss mathematician, born in La Chaux de Fonds, and was a permanent professor at the Institute for Advanced Study in Princeton, New Jersey, United States from 1957 to 1993. He worked in algebraic topology …   Wikipedia

  • André Weil — Pour les articles homonymes, voir Weil. André Weil André Weil (source : AMS) Naissance 6 mai 1906 Paris …   Wikipédia en Français

  • Andre Weil — André Weil (* 6. Mai 1906 in Paris; † 6. August 1998 in Princeton) war ein französischer Mathematiker. Inhaltsverzeichnis 1 Leben 2 Werk 3 Werke 4 …   Deutsch Wikipedia

  • Infinite-Monkey-Theorem — Durch zufälliges Tippen von unendlicher Dauer auf einer Schreibmaschine werden mit Sicherheit alle Texte Shakespeares oder einer beliebigen Nationalbibliothek entstehen. Das Infinite Monkey Theorem (engl. infinite „unendlich“, monkey „Affe“ und… …   Deutsch Wikipedia

  • Infinite Monkey Theorem — Durch zufälliges Tippen von unendlicher Dauer auf einer Schreibmaschine werden mit Sicherheit alle Texte Shakespeares oder diverser Nationalbibliotheken entstehen. Das Infinite Monkey Theorem (v. engl. infinite „unendlich“; monkey „Affe“; theorem …   Deutsch Wikipedia

  • Infinite monkey theorem — Durch zufälliges Tippen von unendlicher Dauer auf einer Schreibmaschine werden mit Sicherheit alle Texte Shakespeares oder diverser Nationalbibliotheken entstehen. Das Infinite Monkey Theorem (v. engl. infinite „unendlich“; monkey „Affe“; theorem …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”