Kelvin functions

Kelvin functions

The Kelvin functions Berν("x") and Beiν("x") are the real and imaginary parts, respectively, of

:J_ u(x e^{3 pi i/4}),,

where "x" is real, and J_ u(z), is the νth order Bessel function of the first kind. Similarly, the functions Kerν("x") and Keiν("x") are the real and imaginary parts, respectively, of K_ u(x e^{3 pi i/4}),, where K_ u(z), is the νth order modified Bessel function of the second kind.

While the Kelvin functions are defined as the real and imaginary parts of Bessel functions with "x" taken to be real, the functions can be analytically continued for complex arguments "x e""i" φ, φ ∈  [0, 2π). With the exception of Ber"n"("x") and Bei"n"("x") for integral "n", the Kelvin functions have a branch point at "x" = 0.

Ber(x)

For integers "n", Ber"n"("x") has the series expansion

:mathrm{Ber}_n(x) = left(frac{x}{2} ight)^n sum_{k geq 0} frac{cosleft [left(frac{3n}{4} + frac{k}{2} ight)pi ight] }{k! Gamma(n + k + 1)} left(frac{x^2}{4} ight)^k

where Gamma(z) is the Gamma function. The special case Ber_0(x), commonly denoted as just Ber(x), has the series expansion

:mathrm{Ber}(x) = 1 + sum_{k geq 1} frac{(-1)^k (x/2)^{4k{ [(2k)!] ^2}

and asymptotic series

:mathrm{Ber}(x) sim frac{e^{frac{x}{sqrt{2{sqrt{2 pi x [f_1(x) cos alpha + g_1(x) sin alpha] - frac{mathrm{Kei}(x)}{pi},

where alpha = x/sqrt{2} - pi/8, and

:f_1(x) = 1 + sum_{k geq 1} frac{cos(k pi / 4)}{k! (8x)^k} prod_{l = 1}^k (2l - 1)^2

:g_1(x) = sum_{k geq 1} frac{sin(k pi / 4)}{k! (8x)^k} prod_{l = 1}^k (2l - 1)^2

Bei(x)

For integers n, Bei_n(x) has the series expansion

:mathrm{Bei}_n(x) = left(frac{x}{2} ight)^n sum_{k geq 0} frac{sinleft [left(frac{3n}{4} + frac{k}{2} ight)pi ight] }{k! Gamma(n + k + 1)} left(frac{x^2}{4} ight)^k

where Gamma(z) is the Gamma function. The special case Bei_0(x), commonly denoted as just Bei(x), has the series expansion

:mathrm{Bei}(x) = sum_{k geq 0} frac{(-1)^k (x/2)^{4k+2{ [(2k+1)!] ^2}

and asymptotic series

:mathrm{Bei}(x) sim frac{e^{frac{x}{sqrt{2{sqrt{2 pi x [f_1(x) sin alpha + g_1(x) cos alpha] - frac{mathrm{Ker}(x)}{pi},

where alpha, f_1(x), and g_1(x) are defined as for Ber(x).


Ker(x)

For integers "n", Ker"n"("x") has the (complicated) series expansion

:mathrm{Ker}_n(x) = frac{1}{2} left(frac{x}{2} ight)^{-n} sum_{k=0}^{n-1} cosleft [left(frac{3n}{4} + frac{k}{2} ight)pi ight] frac{(n-k-1)!}{k!} left(frac{x^2}{4} ight)^k - lnleft(frac{x}{2} ight) mathrm{Ber}_n(x) + frac{pi}{4}mathrm{Bei}_n(x) + frac{1}{2} left(frac{x}{2} ight)^n sum_{k geq 0} cosleft [left(frac{3n}{4} + frac{k}{2} ight)pi ight] frac{psi(k+1) + psi(n + k + 1)}{k! (n+k)!} left(frac{x^2}{4} ight)^k

where psi(z) is the Digamma function. The special case Ker_0(x), commonly denoted as just Ker(x), has the series expansion

:mathrm{Ker}(x) = -lnleft(frac{x}{2} ight) mathrm{Ber}_n(x) + frac{pi}{4}mathrm{Bei}_n(x) + sum_{k geq 0} (-1)^k frac{psi(2k + 1)}{ [(2k)!] ^2} left(frac{x^2}{4} ight)^{2k}

and the asymptotic series

:mathrm{Ker}(x) sim sqrt{frac{pi}{2x e^{-frac{x}{sqrt{2} [f_2(x) cos eta + g_2(x) sin eta] ,

where eta = x/sqrt{2} + pi/8, and

:f_2(x) = 1 + sum_{k geq 1} (-1)^k frac{cos(k pi / 4)}{k! (8x)^k} prod_{l = 1}^k (2l - 1)^2

:g_2(x) = sum_{k geq 1} (-1)^k frac{sin(k pi / 4)}{k! (8x)^k} prod_{l = 1}^k (2l - 1)^2


Kei(x)

For integers "n", Kei"n"("x") has the (complicated) series expansion

:mathrm{Kei}_n(x) = frac{1}{2} left(frac{x}{2} ight)^{-n} sum_{k=0}^{n-1} sinleft [left(frac{3n}{4} + frac{k}{2} ight)pi ight] frac{(n-k-1)!}{k!} left(frac{x^2}{4} ight)^k - lnleft(frac{x}{2} ight) mathrm{Bei}_n(x) - frac{pi}{4}mathrm{Ber}_n(x) + frac{1}{2} left(frac{x}{2} ight)^n sum_{k geq 0} sinleft [left(frac{3n}{4} + frac{k}{2} ight)pi ight] frac{psi(k+1) + psi(n + k + 1)}{k! (n+k)!} left(frac{x^2}{4} ight)^k

where psi(z) is the Digamma function. The special case Kei_0(x), commonly denoted as just Kei(x), has the series expansion

:mathrm{Kei}(x) = -lnleft(frac{x}{2} ight) mathrm{Bei}_n(x) - frac{pi}{4}mathrm{Ber}_n(x) + sum_{k geq 0} (-1)^k frac{psi(2k + 2)}{ [(2k+1)!] ^2} left(frac{x^2}{4} ight)^{2k+1}

and the asymptotic series

:mathrm{Kei}(x) sim -sqrt{frac{pi}{2x e^{-frac{x}{sqrt{2} [f_2(x) sin eta + g_2(x) cos eta] ,

where eta, f_2(x), and g_2(x) are defined as for Ker(x).


See also

* Bessel function

References

*

External links

* Weisstein, Eric W. "Kelvin Functions." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/KelvinFunctions.html]
* GPL-licensed C/C++ source code for calculating Kelvin functions at codecogs.com: [http://www.codecogs.com/d-ox/maths/special/bessel/kelvin.php]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Kelvin (disambiguation) — Kelvin can refer to the River Kelvin, a river in the Scottish city of Glasgow.The physicist and engineer William Thomson, 1st Baron Kelvin adopted the name of the river on his enoblement; it flows past the University of Glasgow, where Thomson… …   Wikipedia

  • Kelvin probe force microscope — Kelvin probe force microscopy ( KPFM ), also known as surface potential microscopy, is a noncontact variant of atomic force microscopy (AFM) that was [http://dns.ntu ccms.ntu.edu.tw/references/APPL PHYS LETT 58 2921 1991.pdf invented] in 1991.… …   Wikipedia

  • Kelvin — This article is about the unit of temperature. For other uses, see Kelvin (disambiguation). Kelvin temperature conversion formulae from Kelvin to Kelvin Celsius [°C] = [K] − 273.15 [K] = [°C] + 273.15… …   Wikipedia

  • Kelvin function — noun A class of special functions usually denoted as two pairs of functions ber(x), bei(x), ker(x) and kei(x) with variable x and given order number n. The former two functions ber(x) and bei(x) respectively correspond to the real part and the… …   Wiktionary

  • Kelvin transform — This article is about a type of transform used in classical potential theory, a topic in mathematics. The Kelvin transform is a device used in classical potential theory to extend the concept of a harmonic function, by allowing the definition of… …   Wikipedia

  • William Thomson, 1st Baron Kelvin — Infobox Scientist box width = 300px name = Lord Kelvin image width = 300px caption = William Thomson, 1st Baron Kelvin (1824 1907) birth date = birth date|1824|6|26|df=y birth place = Belfast, Co. Antrim, Northern Ireland death date = death date… …   Wikipedia

  • List of special functions and eponyms — This is a list of special function eponyms in mathematics, to cover the theory of special functions, the differential equations they satisfy, named differential operators of the theory (but not intended to include every mathematical eponym).… …   Wikipedia

  • Bessel function — In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli and generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel s differential equation: for an arbitrary real or complex number α (the order of the …   Wikipedia

  • Confluent hypergeometric function — In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular… …   Wikipedia

  • List of mathematics articles (K) — NOTOC K K approximation of k hitting set K ary tree K core K edge connected graph K equivalence K factor error K finite K function K homology K means algorithm K medoids K minimum spanning tree K Poincaré algebra K Poincaré group K set (geometry) …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”