Pascal matrix

Pascal matrix

In mathematics, particularly matrix theory and combinatorics, the Pascal matrix is an infinite matrix containing the binomial coefficients as its elements. There are 3 ways this can be achieved - either as an upper-triangular matrix, a lower-triangular matrix, or as a symmetric matrix. The 5×5 truncations of these are shown below.

Upper triangular: U_5=egin{pmatrix}1 & 1 & 1 & 1 & 1 \0 & 1 & 2 & 3 & 4 \0 & 0 & 1 & 3 & 6 \0 & 0 & 0 & 1 & 4 \0 & 0 & 0 & 0 & 1end{pmatrix};,,, lower triangular: L_5=egin{pmatrix}1 & 0 & 0 & 0 & 0 \1 & 1 & 0 & 0 & 0 \1 & 2 & 1 & 0 & 0 \1 & 3 & 3 & 1 & 0 \1 & 4 & 6 & 4 & 1end{pmatrix};,,, symmetric: S_5=egin{pmatrix}1 & 1 & 1 & 1 & 1 \1 & 2 & 3 & 4 & 5 \1 & 3 & 6 & 10 & 15 \1 & 4 & 10 & 20 & 35 \1 & 5 & 15 & 35 & 70end{pmatrix}.

These matrices have the pleasing relationship "Sn = LnUn". From this it is easily seen that all three matrices have determinant 1, as the determinant of a triangular matrix is simply the product of its diagonal elements, which are all 1 for both "Ln" and "Un".In other words, matrices "Sn, Ln", and "Un" are unimodular, with "Ln" and "Un" having trace "n".

The elements of the symmetric Pascal matrix are the binomial coefficients, i.e.

:S_{ij} = {n choose r} = frac{n!}{r!(n-r)!},quad mbox{where}quad n=i+j-2,quad r=i-1In other words,:S_{ij} = { }^{i+j-2}mathbf{C}_{i-1} = frac{(i+j-2)!}{(i-1)!(j-1)!}.

Thus the trace of "Sn" is given by:mbox{tr}(S_n) = sum^n_{i=1} frac{ [ 2(i-1) ] !}{ [(i-1)!] ^2} = sum^{n-1}_{k=0} frac{ (2k) !}{(k!)^2}with the first few terms given by the sequence 1, 3, 9, 29, 99, 351, 1275, ... (Sloane's [http://www.research.att.com/~njas/sequences/A006134 A006134] ).

Construction

The Pascal matrix can actually be constructed by taking the matrix exponential of a special subdiagonal or superdiagonal matrix. The example below constructs a 7-by-7 Pascal matrix, but the method works for any desired "n"×"n" Pascal matrices. (Note that dots in the following matrices represent zero elements.)

:egin{array}{lll}& L_7=mbox{exp}left (left [egin{smallmatrix}. & . & . & . & . & . & . \1 & . & . & . & . & . & . \. & 2 & . & . & . & . & . \. & . & 3 & . & . & . & . \. & . & . & 4 & . & . & . \. & . & . & . & 5 & . & . \. & . & . & . & . & 6 & .

end{smallmatrix} ight ] ight )=left [egin{smallmatrix}1 & . & . & . & . & . & . \1 & 1 & . & . & . & . & . \1 & 2 & 1 & . & . & . & . \1 & 3 & 3 & 1 & . & . & . \1 & 4 & 6 & 4 & 1 & . & . \1 & 5 & 10 & 10 & 5 & 1 & . \1 & 6 & 15 & 20 & 15 & 6 & 1 end{smallmatrix} ight ] ;quad\\& U_7=mbox{exp}left (left [egin{smallmatrix}. & 1 & . & . & . & . & . \. & . & 2 & . & . & . & . \. & . & . & 3 & . & . & . \. & . & . & . & 4 & . & . \. & . & . & . & . & 5 & . \. & . & . & . & . & . & 6 \. & . & . & . & . & . & . end{smallmatrix} ight ] ight )=left [egin{smallmatrix}1 & 1 & 1 & 1 & 1 & 1 & 1 \. & 1 & 2 & 3 & 4 & 5 & 6 \. & . & 1 & 3 & 6 & 10 & 15 \. & . & . & 1 & 4 & 10 & 20 \. & . & . & . & 1 & 5 & 15 \. & . & . & . & . & 1 & 6 \. & . & . & . & . & . & 1 end{smallmatrix} ight ] ;\\

herefore & S_7=mbox{exp}left (left [egin{smallmatrix}. & . & . & . & . & . & . \1 & . & . & . & . & . & . \. & 2 & . & . & . & . & . \. & . & 3 & . & . & . & . \. & . & . & 4 & . & . & . \. & . & . & . & 5 & . & . \. & . & . & . & . & 6 & .

end{smallmatrix} ight ] ight )mbox{exp}left (left [egin{smallmatrix}. & 1 & . & . & . & . & . \. & . & 2 & . & . & . & . \. & . & . & 3 & . & . & . \. & . & . & . & 4 & . & . \. & . & . & . & . & 5 & . \. & . & . & . & . & . & 6 \. & . & . & . & . & . & . end{smallmatrix} ight ] ight )=left [egin{smallmatrix}1 & 1 & 1 & 1 & 1 & 1 & 1 \1 & 2 & 3 & 4 & 5 & 6 & 7 \1 & 3 & 6 & 10 & 15 & 21 & 28 \1 & 4 & 10 & 20 & 35 & 56 & 84 \1 & 5 & 15 & 35 & 70 & 126 & 210 \1 & 6 & 21 & 56 & 126 & 252 & 462 \1 & 7 & 28 & 84 & 210 & 462 & 924end{smallmatrix} ight ] .end{array}

It is important to note that you cannot simply assume exp("A")exp("B") = exp("A" + "B"), for "A" and "B" "n"×"n" matrices. Such an identity only holds when "AB" = "BA" (i.e. the matrices "A" and "B" commute). In the construction of symmetric Pascal matrices like that above, the sub- and superdiagonal matrices do not commute, so the (perhaps) tempting simplification involving the addition of the matrices cannot be made.

A useful property of the sub- and superdiagonal matrices used in the construction is that both are nilpotent; that is, when raised to a sufficiently high integer power, they degenerate into the zero matrix. (See shift matrix for further details.) As the "n"×"n" generalised shift matrices we are using become zero when raised to power "n", when calculating the matrix exponential we need only consider the first "n" + 1 terms of the infinite series to obtain an exact result.

ee also

*Pascal's triangle
*LU decomposition

References

* G. S. Call and D. J. Velleman, "Pascal's matrices", "American Mathematical Monthly", volume 100, (April 1993) pages 372–376
* Alan Edelman and Gilbert Strang, "Pascal Matrices", "American Mathematical Monthly", volume 111, (March 2004), pages 361–385


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Pascal's triangle — The first six rows of Pascal s triangle In mathematics, Pascal s triangle is a triangular array of the binomial coefficients in a triangle. It is named after the French mathematician, Blaise Pascal. It is known as Pascal s triangle in much of the …   Wikipedia

  • Matrix — Données clés Titre original The Matrix …   Wikipédia en Français

  • Matrix (monde imaginaire) — Matrix Matrix Titre original The Matrix Titre québécois La Matrice Réalisation Andy et Larry Wachowski Acteurs principaux …   Wikipédia en Français

  • Matrix (univers de fiction) — Matrix Matrix Titre original The Matrix Titre québécois La Matrice Réalisation Andy et Larry Wachowski Acteurs principaux …   Wikipédia en Français

  • Pascal's Wager — (or Pascal s Gambit) is a suggestion posed by the French philosopher Blaise Pascal that even though the existence of God cannot be determined through reason, a person should wager as though God exists, because so living has potentially everything …   Wikipedia

  • Matrix Reloaded — Données clés Titre original The Matrix Reloaded Réalisation Andy et Larry Wachowski Scénario Andy et Larry Wachowski Acteurs principaux Keanu Reeves Laurence Fishburne Carrie Anne Moss …   Wikipédia en Français

  • Matrix Revolutions — Données clés Titre original The Matrix Revolutions Réalisation Andy et Larry Wachowski Scénario Andy et Larry Wachowski Acteurs principaux Keanu Reeves Laurence Fishburne Carrie Anne Moss …   Wikipédia en Français

  • Matrix Revolution — Matrix Revolutions Matrix Revolutions Titre original The Matrix Revolutions Réalisation Andy et Larry Wachowski Acteurs principaux Keanu Reeves Laurence Fishburne Carrie Anne Moss Hugo Weaving Monica Bellucci Jada Pinkett Smith Scénario And …   Wikipédia en Français

  • Matrix revolution — Matrix Revolutions Matrix Revolutions Titre original The Matrix Revolutions Réalisation Andy et Larry Wachowski Acteurs principaux Keanu Reeves Laurence Fishburne Carrie Anne Moss Hugo Weaving Monica Bellucci Jada Pinkett Smith Scénario And …   Wikipédia en Français

  • Matrix revolutions — Titre original The Matrix Revolutions Réalisation Andy et Larry Wachowski Acteurs principaux Keanu Reeves Laurence Fishburne Carrie Anne Moss Hugo Weaving Monica Bellucci Jada Pinkett Smith Scénario And …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”