Borel-Cantelli lemma

Borel-Cantelli lemma

In probability theory, the Borel-Cantelli lemma is a theorem about sequences of events. In a slightly more general form, it is also a result in measure theory. It is named after Émile Borel and Francesco Paolo Cantelli.

Let ("E""n") be a sequence of events in some probability space.The Borel-Cantelli lemma states:

:If the sum of the probabilities of the "E""n" is finite

::sum_{n=1}^infty P(E_n)

:then the probability that infinitely many of them occur is 0, that is,

::Pleft(limsup_{n oinfty} E_n ight) = 0.,

Here, "lim sup" denotes limit superior of the events considered as sets. Note that no assumption of independence is required.

For example, suppose ("X""n") is a sequence of random variables, with Pr("X""n" = 0) = 1/"n"2 for each "n". The sum of Pr("X""n" = 0) is finite (in fact it is pi^2/6 - see Riemann zeta function), so the Borel-Cantelli Lemma says that the probability of "X""n" = 0 occurring for infinitely many "n" is 0. In other words "X""n" is nonzero almost surely for all but finitely many "n".

For general measure spaces, the Borel-Cantelli lemma takes the following form:

:Let μ be a measure on a set "X", with σ-algebra "F", and let ("A""n") be a sequence in "F". If

::sum_{n=1}^inftymu(A_n)

:then

::muleft(limsup_{n oinfty} A_n ight) = 0.,

A related result, sometimes called the second Borel-Cantelli lemma, is a partial converse of the first Borel-Cantelli lemma. It says:

:If the events "E""n" are independent and the sum of the probabilities of the "E""n" diverges to infinity, then the probability that infinitely many of them occur is 1.

The assumption of independence can be weakened to pairwise independence, but in that case the proof is more difficult.

The infinite monkey theorem is a special case of this lemma.

The lemma can be applied to give a covering theorem in R"n". Specifically harv|Stein|1993|loc=Lemma X.2.1, if "E""j" is a collection of Lebesgue measurable subsets of a compact set in R"n" such that

:sum_j mu(E_j) = infty,

then there is a sequence "F""j" of translates

:F_j = E_j + x_j

such that

:limsup F_j = igcap_{n=1}^infty igcup_{k=n}^infty F_k = mathbb{R}^n

apart from a set of measure zero.

Counterpart

Another related result is the so-called counterpart of the Borel-Cantelli lemma. It is a counterpart of theLemma in the sense that it gives a necessary and sufficient condition for the limsup to be 1 by replacing the independence assumption by the completely different assumption that ,( A_n ) is monotone increasing for sufficiently large indices. This Lemma says:

Let ,( A_n ), be such that A_{k} subseteq A_{k+1} ,and let ,ar A , denote the complement of , A ,.

Then the probability of infinitely many , A_k , occur (that is, at least one , A_k , occurs) is one if and only ifthere exists a strictly increasing sequence of positive integers ,( t_ k ), such that

: sum_{k} P( A_{t_{k+1| ar A_{t_k}) = infty.

This simple result can be useful in problems such as for instance those involving hitting probabilities for stochastic process with the choice of the sequence ,( t_ k ), usually being the essence.

References

*.
*.
*.

External links

* [http://planetmath.org/encyclopedia/BorelCantelliLemma.html Planet Math Proof] Refer for a simple proof of the Borel Cantelli Lemma


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Borel-Cantelli-Lemma — Das Borel Cantelli Lemma (nach Émile Borel und Francesco Cantelli) ist ein Satz der Wahrscheinlichkeitstheorie. Es ist oftmals sehr hilfreich bei der Untersuchung auf fast sichere Konvergenz von Zufallsvariablen. Das Lemma besteht aus zwei Teilen …   Deutsch Wikipedia

  • Borel — ist der Familienname folgender Personen: Alfred Borel (1902–1997), Schweizer Politiker (FDP) Armand Borel (1923–2003), Schweizer Mathematiker Daniel Borel (* 1950), Schweizer Manager Émile Borel (1871–1956), französischer Mathematiker und… …   Deutsch Wikipedia

  • Emile Borel — Émile Borel Félix Édouard Justin Émile Borel (* 7. Januar 1871 in Saint Affrique, Département Aveyron, Region Midi Pyrénées; † 3. Februar 1956 in Paris) war Mathematiker und Politiker …   Deutsch Wikipedia

  • Francesco Paolo Cantelli — (* 20. Dezember 1875 in Palermo; † 21. Juli 1966 in Rom) war ein italienischer Mathematiker. Am bekanntesten ist er für das Borel Cantelli Lemma aus der Wahrscheinlichkeitstheorie. Er entwickelte außerdem, wie auch Waleri Iwanowitsch Gliwenko,… …   Deutsch Wikipedia

  • Félix Edouard Justin Emile Borel — Émile Borel Félix Édouard Justin Émile Borel (* 7. Januar 1871 in Saint Affrique, Département Aveyron, Region Midi Pyrénées; † 3. Februar 1956 in Paris) war Mathematiker und Politiker …   Deutsch Wikipedia

  • Félix Edouard Justin Émile Borel — Émile Borel Félix Édouard Justin Émile Borel (* 7. Januar 1871 in Saint Affrique, Département Aveyron, Region Midi Pyrénées; † 3. Februar 1956 in Paris) war Mathematiker und Politiker …   Deutsch Wikipedia

  • Null-Eins-Gesetz von Borel — Als Null Eins Gesetze werden in der Wahrscheinlichkeitstheorie solche Sätze bezeichnet, die besagen, dass die Wahrscheinlichkeit für Ereignisse eines bestimmten Typs entweder 0 oder 1 sind. Das heißt: Sie treten entweder sicher ein oder sicher… …   Deutsch Wikipedia

  • Émile Borel — Infobox Person name = Félix Édouard Justin Émile Borel image size = 200px caption = Émile Borel birth date = birth date|1871|1|7|mf=y birth place = Saint Affrique, France death date = death date and age|1956|2|3|1871|1|7|mf=y death place = Paris …   Wikipedia

  • Francesco Cantelli — Francesco Paolo Cantelli (* 20. Dezember 1875 in Palermo; † 21. Juli 1966 in Rom) war ein italienischer Mathematiker. Am bekanntesten ist er für das Borel Cantelli Lemma aus der Wahrscheinlichkeitstheorie. Er entwickelte außerdem, wie auch Waleri …   Deutsch Wikipedia

  • Émile Borel — Félix Édouard Justin Émile Borel (* 7. Januar 1871 in Saint Affrique, Département Aveyron, Region Midi Pyrénées; † 3. Februar 1956 in Paris) war Mathematiker und Politiker. Inhaltsverzeichnis 1 Leben und Wirken 2 Schriften …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”