Cramér's conjecture

Cramér's conjecture

In number theory, Cramér's conjecture, formulated by the Swedish mathematician Harald Cramér in 1936,[1] states that

p_{n+1}-p_n=O((\log p_n)^2),\

where pn denotes the nth prime number, O is big O notation, and "log" is the natural logarithm. Intuitively, this means the gaps between consecutive primes are always small, and it quantifies asymptotically just how small they can be. This conjecture has not been proven or disproven.

Contents

Heuristic justification

Cramér's conjecture is based on a probabilistic model (essentially a heuristic) of the primes, in which one assumes that the probability that a natural number x is prime is 1/log x. This is known as the Cramér model of the primes. Cramér proved that in this model, the above conjecture holds true with probability one.[1]

Proven results on prime gaps

Cramér also gave much weaker conditional proof that

p_{n+1}-p_n = \mathcal{O}(\sqrt{p_n}\,\log p_n)

on the assumption of the Riemann hypothesis.[1]

In the other direction, E. Westzynthius proved in 1931 that prime gaps grow more than logarithmically. That is,[2]

\limsup_{n\to\infty}\frac{p_{n+1}-p_n}{\log p_n}=\infty.

Cramér-Granville conjecture

Daniel Shanks conjectured asymptotic equality of record gaps, a somewhat stronger statement than Cramér's conjecture.[3]

In the random model,

\limsup_{n\rightarrow\infty} \frac{p_{n+1}-p_n}{(\log p_n)^2} = c, with c = 1.

But this constant, c, may not apply to all the primes, by Maier's theorem. Andrew Granville in 1995 proposed the constant c = 2e^{-\gamma}\approx1.1229\ldots.[4]

Thomas Nicely has calculated many large prime gaps.[5] He measures the quality of fit to Cramér's conjecture by measuring the ratio R of the logarithm of a prime to the square root of the gap; he writes, “For the largest known maximal gaps, R has remained near 1.13,” showing that, at least within the range of his calculation, the Granville refinement of Cramér's conjecture seems to be a good fit to the data.

See also

References

  1. ^ a b c Cramér, Harald (1936), "On the order of magnitude of the difference between consecutive prime numbers", Acta Arithmetica 2: 23–46 .
  2. ^ Westzynthius, E. (1931), "Über die Verteilung der Zahlen die zu den n ersten Primzahlen teilerfremd sind", Commentationes Physico-Mathematicae Helingsfors 5: 1–37 .
  3. ^ Shanks, Daniel (1964), "On Maximal Gaps between Successive Primes", Mathematics of Computation (American Mathematical Society) 18 (88): 646–651, doi:10.2307/2002951, JSTOR 2002951 .
  4. ^ Granville, A. (1995), "Harald Cramér and the distribution of prime numbers", Scandinavian Actuarial Journal 1: 12–28, http://www.dartmouth.edu/~chance/chance_news/for_chance_news/Riemann/cramer.pdf .
  5. ^ Nicely, Thomas R. (1999), "New maximal prime gaps and first occurrences", Mathematics of Computation 68 (227): 1311–1315, doi:10.1090/S0025-5718-99-01065-0, MR1627813, http://www.trnicely.net/gaps/gaps.html .

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Conjecture de Cramér — En mathématiques, la conjecture de Cramér, formulée par le mathématicien suédois Harald Cramér en 1936[1], pronostique que où pn est le n ième nombre premier et désigne le O de Landau ; cette conjecture n est pas démontrée à ce jour …   Wikipédia en Français

  • Conjecture De Cramér — En mathématiques, la conjecture de Cramér, formulée par le mathématicien suédois Harald Cramér en 1936, énonce que où pn est le n ième nombre premier ; cette conjecture n est pas démontrée à ce jour. Cramér a aussi formulé une autre… …   Wikipédia en Français

  • Conjecture de Cramer — Conjecture de Cramér En mathématiques, la conjecture de Cramér, formulée par le mathématicien suédois Harald Cramér en 1936, énonce que où pn est le n ième nombre premier ; cette conjecture n est pas démontrée à ce jour. Cramér a aussi… …   Wikipédia en Français

  • Conjecture de cramér — En mathématiques, la conjecture de Cramér, formulée par le mathématicien suédois Harald Cramér en 1936, énonce que où pn est le n ième nombre premier ; cette conjecture n est pas démontrée à ce jour. Cramér a aussi formulé une autre… …   Wikipédia en Français

  • Conjecture de Legendre — La conjecture de Legendre, proposée par Adrien Marie Legendre, énonce qu il existe un nombre premier entre n2 et (n+1)2 pour tout entier n. Cette conjecture est l un des problèmes de Landau, et n a pas été résolue à l heure actuelle (2011).… …   Wikipédia en Français

  • Harald Cramér — Born 25 September 1893(1893 09 25) Stockholm, Sweden …   Wikipedia

  • Andrica's conjecture — (named after Dorin Andrica) is a conjecture regarding the gaps between prime numbers. [ D. Andrica, Note on a conjecture in prime number theory. Studia Univ. Babes Bolyai Math. 31 (1986), no. 4, 44 48. ] The conjecture states that the inequality …   Wikipedia

  • Singmaster's conjecture — In combinatorial number theory, Singmaster s conjecture, named after David Singmaster, says there is a finite upper bound on the multiplicities of entries in Pascal s triangle (other than the number 1, which appears infinitely many times). It is… …   Wikipedia

  • Twin prime conjecture — The twin prime conjecture is a famous unsolved problem in number theory that involves prime numbers. It states:: There are infinitely many primes p such that p + 2 is also prime. Such a pair of prime numbers is called a prime twin. The conjecture …   Wikipedia

  • Harald Cramér — Pour les articles homonymes, voir Cramer. Harald Cramér Harald Cramér, né le 25 septembre 1893 et mort le 5 octobre 1985, e …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”