Swashplate engine

Swashplate engine
Almen A-4 barrel engine

A swashplate engine, also called a barrel engine, is one type of axial engine. Swashplate engines are a type of reciprocating engine that replaces the common crankshaft with a circular swashplate which rotates.

The key advantage of the swashplate design is that the cylinders are arranged in parallel around the edge of the plate, and possibly on either side of it as well, and are aligned with the output shaft rather than at 90 degrees as in crankshaft engines. As a result it is a very compact, cylindrical engine. The arrangement also allows the compression ratio of the engine to be changed while running by adjusting the distance of the plate from the cylinders. In a swashplate engine the piston rods stay parallel with the shaft, and piston side-forces that cause excessive wear can be eliminated almost completely. The small-end bearing of a traditional connecting rod, one of the most problematic bearing in a traditional engine, is eliminated. An alternate design, the Rand cam engine, replaces the plate with a sine-shaped cam.

A wobble-plate is similar to a swashplate, in that the pistons press down on the plate in sequence, forcing it to nutate around its center. This motion can be simulated by placing a Compact Disc on a ball bearing at its centre and pressing down at progressive places around its circumference. The difference is that while a wobble plate nutates, a swash-plate rotates.[1]

Contents

History

Macomber

Swashplate animation. Note that the swashplate is fastened to the shaft, so it rotates with it.

In 1911 the Macomber Rotary Engine Company of Los Angeles marketed one of the first axial internal-combustion engines, manufactured by the Avis Engine Company of Allston, Massachusetts. A four-stroke, air-cooled unit, it had seven cylinders and a variable compression ratio, altered by changing the wobble-plate angle and hence the length of piston stroke.[2] It was called a "rotary engine" because the entire engine rotated apart from the end casings.

Ignition was supplied by a Bosch magneto directly driven from the cam gears. The high voltage current was then taken to a fixed electrode on the front bearing case, from which the sparks would jump to the spark plugs in the cylinder heads as they passed within 1/16 inch from it. According to Macomber's literature, it was "Guaranteed not to overheat".

The engine was claimed to be able to run at 150 to 1,500 rpm. At the normal speed of 1,000 rpm, it reportedly developed 50 hp. It weighed 230 pounds (100 kg) and it was 28 inches (710 mm) long by 19 inches (480 mm) in diameter.

Pioneer aviator Charles Francis Walsh flew an aircraft powered by a Macomber engine in May 1911, the "Walsh Silver Dart".[3]

Statax

In 1913 Statax-Motor of Zurich, Switzerland introduced a swashplate engine design. Only a single prototype was produced, which is currently held in the Science Museum, London. In 1914 the company moved to London to become the Statax Engine Company and planned on introducing a series of rotary engines; a 3-cylinder of 10 hp, a 5-cylinder of 40 hp, a 7-cylinder of 80 hp, and a 10-cylinder of 100 hp.[4]

It appears only the 40 hp design was ever produced, which was installed in a Caudron G.II for the British 1914 Aerial Derby but was withdrawn before the flight. Hansen introduced an all-aluminum version of this design in 1922, but it is not clear if they produced it in any quantity. Much improved versions were introduced by Statax's German division in 1929, producing 42 hp in a new sleeve valve version known as the 29B. Greenwood and Raymond of San Francisco acquired the patent rights for the US, Canada, and Japan, and planned a 5-cylinder of 100 hp and a 9-cylinder of 350 hp.

Michell

In 1917 Anthony Michell obtained patents for his swashplate engine design. Its unique feature was the means of transferring the load from the pistons to the swashplate, achieved using tilting slipper pads sliding on a film of oil. Another innovation by Michell was his mathematical analysis of the mechanical design, including the mass and motion of the components, so that his engines were in perfect dynamic balance at all speeds.

In 1920 Michell established the Crankless Engines Company in Fitzroy (Australia), and produced working prototypes of pumps, compressors, car engines and aero engines, all based on the same basic design.[5]

The legendary Phil Irving worked for the Crankless Engine Company before his time at HRD.

A number of companies obtained a manufacturing licence for Michell’s design. The most successful of these was the British company Waller and Son, who produced gas boosters.[6]

The largest Michell crankless engine was the XB-4070, a diesel aircraft engine built for the US Navy. Consisting of 18 pistons, it was rated at 2000 horsepower and weighed 2150 pounds.

J.O. Almen

Experimental barrel engines for aircraft use were built and tested by Mr J.O. Almen of Seattle in the early 1920s, and by the mid-1920s the water-cooled Almen A-4 (18 cylinders, two groups of nine each horizontally opposed) had passed its United States Air Corps acceptance tests. It however never entered production, reportedly due to limited funds and the Air Corps' growing emphasis on air-cooled radial engines. The A-4 had much smaller frontal area than water-cooled engines of comparable power output, and thereby offered better streamlining possibilities. It was rated at 425 horsepower (317 kW), and weighed only 749 pounds (340 kg), thus giving a power/weight ratio of better than 1:2, a considerable design achievement at the time.[7]

Heraclio Alfaro

Heraclio Alfaro was a Spanish aviator who was knighted at the age of 18 by King Alfonso XIII of Spain for designing, building, and flying Spain's first airplane. He developed a barrel engine for aircraft use which was later produced by the Indian Motorcycle Company as the Alfaro. It was a perfect example of the "put in everything" design, as it included a sleeve valve system based on a rotating cylinder head, a design that never entered production on any engine. It was later developed further for use in the Doman helicopter by Stephen duPont, son of the president of the Indian Motorcycle Company, who had been one of Alfaro's students at MIT.[8]

Bristol

The Bristol Axial Engine of the mid 1930s was designed by Charles Benjamin Redrup for the Bristol Tramways and Carriage Company; it was a 7-litre, 9-cylinder, wobble-plate type engine. It was originally conceived as a power unit for buses, possibly because its compact format would allow it to be installed beneath the vehicle's floor. The engine had a single rotary valve to control induction and exhaust. Several variants were used in Bristol buses during the late 1930s, the engine going through several versions from RR1 to RR4, which had a power output of 145 hp at 2900 rpm. Development was halted in 1936 following a change of management at the Bristol company.[9]

Wooler

Perhaps the most refined of the designs was the British Wooler wobble-plate engine of 1947. This 6-cylinder engine was designed by John Wooler, better known as a motorcycle engine designer, for aircraft use. It was similar to the Bristol axial engine but had two wobble-plates, driven by 12 opposed pistons in 6 cylinders. The engine is often incorrectly referred to as a swashplate engine.[10] A single example is preserved in the Aeroplane Gallery of The Science Museum, London.

H.L.F Trebert

Some small barrel engines were produced by the H.L.F. Trebert Engine Works of Rochester, New York for marine usage.

Present day

Dyna-Cam

The Dyna-Cam engine originally came from a design by the Blazer brothers, who worked for Studebaker in 1916. They sold the rights to Karl Herrmann, Studebaker's head of engineering, who developed the concept over many years, eventually taking out US patent 2237989 in 1941.[11] It has 6 double-ended pistons working in 6 cylinders, and its 12 combustion chambers are fired every revolution of the drive shaft. The pistons drive a sine-shaped cam, as opposed to a swashplate or wobble-plate, hence its name.

In 1961, at the age of 80, Herrmann sold the rights to one of his employees, Edward Palmer, who set up the Dyna-Cam Engine Corp. along with son Dennis. Edward's son Dennis and daughter Pat then helped get the engine installed in a Piper Arrow. The engine was flown for about 700 hours in the Piper Arrow from 1987 through 1991. Their longest engine ran for nearly 4000 hours before overhaul. Dyna-Cam opened an R & D facility in around 1993 and won many various awards from NASA, US Navy, the US Marine Corps, California Energy Commission, Air Quality Management District, and Los Angeles Regional Technology Alliance for different variations of the same Dyna-Cam Engine. About 40 prototype engines were built by the Herrmann Group and another 25 built by the Dyna-Cam Group since they acquired the engine and opened their shop. A new patent was granted to Dennis Palmer and Edward Palmer first in 1985 and then several more around 2000 to Dennis Palmer. In 2003 the assets of the Dyna-Cam Engine Corp were acquired by first Aero-Marine Corp. who changed their name to Axial Vector Engine Corporation.[12] Axial Vector then totally re-designed the cam engine. Axial Vector's new engine, like many of the others on this list, suffers from the "put in everything" problem, including piezoelectric valves and ignition, ceramic cylinder liners with no piston rings, and a variety of other advanced features. It has almost no similarity to the original Herrmann and Dyna-Cam Engine since the Dyna-Cam Engine used conventional valves, piston rings, accessories, had no unproven ceramic materials and actually flew in a Piper Arrow and also powered a 20-foot (6.1 m) Eliminator Ski Boat for over four years.

Fairdiesel

UK company FairDiesel Limited is designing two-stroke diesel opposed piston barrel engines which use non-sinusoidal cams, for industrial applications and aviation use. Their designs range from a 2-cylinder, 80 mm bore engine to a 32-cylinder, 160 mm bore one.[13]

Honda

After introducing a hydrostatic drive in 2001 for their FourTrax Rubicon ATV, in the DN-01 motorcycle was announced in 2005, and began selling in 2008. It is the first production, road-going vehicle with hydrostatic drive.[14]

Applications

  • The most well-known application is in torpedoes, where the cylindrical shape is desirable. The modern Mark 48 torpedo is powered by a 500 hp swashplate engine geared to a pump-jet propulsor. It is fueled by Otto fuel II, a monopropellant that requires no oxygen supply and can propel the torpedo at up to 65 knots (120 km/h) (74.56 mph).[15]

See also

Notes

  1. ^ Self, Douglas. "Axial Internal Combustion Engines". The Museum of Retro Technology. http://www.aqpl43.dsl.pipex.com/MUSEUM/POWER/unusualICeng/axial-ICeng/axial-IC.htm. Retrieved 2011-05-01. 
  2. ^ "Macomber aero engine". Pilotfriend. http://www.pilotfriend.com/aero_engines/aero_macomber.htm. Retrieved 2008-07-04. 
  3. ^ "Charles F. Walsh". earlyaviators.com. http://www.earlyaviators.com/ewalsh4.htm. Retrieved 2008-07-04. 
  4. ^ Angle, Glenn Dale (1921). Airplane Engine Encyclopedia. Otterbein Press. p. 468. 
  5. ^ http://www.adb.online.anu.edu.au/biogs/A100480b.htm
  6. ^ http://www.aqpl43.dsl.pipex.com/MUSEUM/POWER/unusualICeng/axial-ICeng/axial-IC.htm#mich
  7. ^ "Fact Sheets > Almen A-4 Barrel". National Museum of the United States Air Force. http://www.nationalmuseum.af.mil/factsheets/factsheet.asp?id=808. Retrieved 2008-06-29. 
  8. ^ Stephen, duPont (2006). A 1911 Spanish Pilot and MIT Aeroengineer and his 1938 Aeroengine. TEBA Group. ISBN 0-9777134-0-7. 
  9. ^ Setright, L.J.K. (1975). Some Unusual Engines. Mechanical Engineering Publications. ISBN 0852982089. 
  10. ^ Smith, Herschel H. (1981). Aircraft Piston Engines: From the Manly Baltzer to the Continental Tiara. McGraw-Hill. ISBN 0070584729. 
  11. ^ Herrmann, Karl L. (Apr 1941). "US Patent number 2237989". USPO. http://www.google.com/patents?id=oQ1oAAAAEBAJ&dq=2237989. Retrieved 2008-07-04. 
  12. ^ "Axial Vector Engine Corporation Announces Resolution of Dyna-Cam Litigation". Axial Vector Engine Corporation. July 6, 2006. Archived from the original on 2008-03-02. http://web.archive.org/web/20080302143152/http://www.axialvectorengine.com/press_release-30.html. Retrieved 2008-07-04. 
  13. ^ "Two-Stroke Diesel Engines for Broad Application". FairDiesel Limited. 2006. http://www.fairdiesel.co.uk/. Retrieved 2008-07-07. 
  14. ^ Duke, Kevin (16 March 2009). "2009 Honda DN-01 Review; A marriage of motorcycle and scooter". Motorcycle.com. http://www.motorcycle.com/manufacturer/2009-honda-dn01-review-quick-ride-88080.html 
  15. ^ Friedman, Norman (1997). The Naval Institute Guide to World Naval Weapons Systems, 1997-1998. Naval Institute Press. p. 694. ISBN 1557502684. 
  16. ^ "Technical Innovations Honda's CVTs for ATVs". Off-Highway Engineering Online. http://www.sae.org/ohmag/techinnovations_10-00/04.htm. Retrieved 2008-07-07. 
  17. ^ "Variable Swashplate Compressors". Visteon Corporation. 2008. http://www.visteon.com/products/automotive/variable_swashplate.html. 
  18. ^ Urieli, Dr. Israel (12/02/2007). "Stirling Engine Configurations". http://www.ent.ohiou.edu/~urieli/stirling/engines/engines.html. Retrieved 2008-07-07. 

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Swashplate — A swashplate is a device used in mechanical engineering to translate the motion of a rotating shaft into reciprocating motion. Conversely it can translate a reciprocating motion into a rotating one and can be used to replace the crankshaft in… …   Wikipedia

  • Four-stroke engine — Four stroke cycle used in gasoline/petrol engines. The right blue side is the intake and the left yellow side is the exhaust. The cylinder wall is a thin sleeve surrounded by cooling liquid. A video montage of the Otto engines running at the… …   Wikipedia

  • Stirling engine — Alpha type Stirling engine. There are two cylinders. The expansion cylinder (red) is maintained at a high temperature while the compression cylinder (blue) is cooled. The passage between the two cylinders contains the regenerator …   Wikipedia

  • Two-stroke engine — Brons two stroke V8 Diesel engine driving a Heemaf generator. A two stroke engine is an internal combustion engine that completes the process cycle in one revolution of the crankshaft (an up stroke and a down stroke of the piston, compared to… …   Wikipedia

  • Corliss steam engine — A Corliss steam engine – the valve gear is on the right of the cylinder block, on the left of the picture A Corliss steam engine (or Corliss engine) is a steam engine, fitted with rotary valves and with variable valve timing patented in 1849 …   Wikipedia

  • Reciprocating engine — internal combustion piston engine. E Exhaust camshaft I Intake camshaft S Spark plug V Valves P Piston R Connecting rod C Crankshaft W Water jacket for coolant flow.] A reciprocating engine, also often known as a piston engine, is a heat engine… …   Wikipedia

  • Bourke engine — The Bourke Engine was designed by Russell Bourke in the 1920s, as an improved two stroke engine. Despite finishing his design and building several working engines, the onset of World War II, lack of test results,[1] and the poor health of his… …   Wikipedia

  • Opposed-piston engine — This article is about existing engine designs. For the quite different concept proposed by Frank Stelzer, see Stelzer engine. Fairbanks Morse opposed piston diesel engines on the submarine USS Pampanito An opposed piston engine is a reciprocating …   Wikipedia

  • Controlled Combustion Engine — REVETEC X4v2 Prototype Engine Controlled Combustion Engine (CCE) is a term used by Revetec, an engine design company, to identify a type of experimental internal combustion engine (ICE) designed by Brad Howell Smith. It uses two counter rotating… …   Wikipedia

  • Stroke (engine) — Reciprocating motion, used in reciprocating engines and other mechanisms, is back and forth motion. Each cycle of reciprocation consists of two opposite motions: there is a motion in one direction, and then a motion back in the opposite direction …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”