Clique cover problem

Clique cover problem

In computational complexity theory, finding a minimum clique cover is a graph-theoretical NP-complete problem. The problem was one of Richard Karp's original 21 problems shown NP-complete in his 1972 paper "Reducibility Among Combinatorial Problems".

The clique cover problem (also sometimes called partition into cliques) is the problem of determining whether the vertices of a graph can be partitioned into k cliques. Given a partition of the vertices into k sets, it can be verified in polynomial time that each set forms a clique, so the problem is in NP. The NP-completeness of clique cover follows by reduction from GRAPH k-COLOURABILITY. To see this, first transform an instance G of GRAPH k-COLOURABILITY into its complement graph G'. A partition of G' into k cliques then corresponds to finding a partition of the vertices of G into k independent sets; each of these sets can then be assigned one colour to yield a k-colouring.

The related clique edge cover problem considers sets of cliques that include all of the edges of a given graph. It is also NP-complete.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Clique cover — In computational complexity theory, finding a minimum clique cover is a graph theoretical NP complete problem. The problem was one of Richard Karp s original 21 problems shown NP complete in his 1972 paper Reducibility Among Combinatorial… …   Wikipedia

  • Vertex cover problem — In computer science, the vertex cover problem or node cover problem is an NP complete problem and was one of Karp s 21 NP complete problems. It is often used in complexity theory to prove NP hardness of more complicated problems. Definition A… …   Wikipedia

  • Clique (graph theory) — A graph with 23 1 vertex cliques (its vertices), 42 2 vertex cliques (its edges), 19 3 vertex cliques (the light blue triangles), and 2 4 vertex cliques (dark blue). Six of the edges and 11 of the triangles form maximal cliques. The two dark blue …   Wikipedia

  • Clique (Graphentheorie) — Knotenüberdeckungen, Cliquen und stabile Mengen sind Begriffe der Graphentheorie und bezeichnen spezielle Teilmengen von Knoten in Graphen. Das Finden von minimalen Knotenüberdeckungen und größten Cliquen bzw. stabilen Mengen gilt als… …   Deutsch Wikipedia

  • Vertex cover — In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set. The problem of finding a minimum vertex cover is a classical… …   Wikipedia

  • Optimization problem — In mathematics and computer science, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories depending on whether the variables are continuous or… …   Wikipedia

  • Independent set problem — In mathematics, the independent set problem (IS) is a well known problem in graph theory and combinatorics. The independent set problem is known to be NP complete. It is almost identical to the clique problem. Description Given a graph G , an… …   Wikipedia

  • Vertex-Cover — Knotenüberdeckungen, Cliquen und stabile Mengen sind Begriffe der Graphentheorie und bezeichnen spezielle Teilmengen von Knoten in Graphen. Das Finden von minimalen Knotenüberdeckungen und größten Cliquen bzw. stabilen Mengen gilt als… …   Deutsch Wikipedia

  • Vertex Cover — Knotenüberdeckungen, Cliquen und stabile Mengen sind Begriffe der Graphentheorie und bezeichnen spezielle Teilmengen von Knoten in Graphen. Das Finden von minimalen Knotenüberdeckungen und größten Cliquen bzw. stabilen Mengen gilt als… …   Deutsch Wikipedia

  • Größte Clique — Knotenüberdeckungen, Cliquen und stabile Mengen sind Begriffe der Graphentheorie und bezeichnen spezielle Teilmengen von Knoten in Graphen. Das Finden von minimalen Knotenüberdeckungen und größten Cliquen bzw. stabilen Mengen gilt als… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”